AD-AU98 576 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO=--ETC F/G 17/2
SPECIFICATION AND VERIFICATION OF COMMUNICATION PROTOCOLS IN AF=<ETC(U)
MAR 81 D H THOMPSONes C A SUNSHINE DAHC15~75~C=-0308

UNCLASSIFIED ISI/RR=81-88 NL

L

I““ 1O e 22
=2
|||H T =

LS s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1962 A

. . &

David H. Thompson
Carl A. Sunshine
Roddy W. Erickson
Susan L. Gerhart
Daniel Schwabe

C—

[BIATRBCTION STATEMENT 2

DTIC FILE copY

ISI/RR-81-88
March 1981

e o Specification and Verification of
a o Communication Protocols in AFFIRM
<< Using State Transition Models

A
?pproved for public x.elecm.:
Digtribution Uniimited)

INFORMATION SCIENCES INSTITUTE

4676 Admvalty Way[Marina del Rey [Californa 00201
UNIVERSITY OF SOUTHERN CALIFORNIA (213) 82> 0511

e PRI o1 . it s At

[

UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
BEPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T _REPORT RUMBER .. 2. GOVT ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER
/1) ISI/RR-81-88 . - AL W1/

4. TITLE (and Subtitte) S. TYPE OF REPQRT & PERIOD COVERED
Specnflcation and Verification of Communication B
Protocols in AFFIRM Using State Transition Research ;- « ":A
Models o N e |7 PERFORWING ORG. REPORT HUNBER
7. AUTHOR(2) 8. CONTRACT OR GRANT NUMBER(s)
David H /Thompson Susan L./Gerhart —

Carl A /Sunshlne Danielfchwabe /// DAHC15-72-C-0308
Roddy W.JErickson o 1 '

19 ’!"Oiu ING OIGANIZATION NAME AND ADDRESS 10. EESEEAiliWE E. mT ,PROJECYT,; FASK
USC/Information Sciences Institute ORK UNIT NUMBERS
L4676 Admiralty Way , .

Marina del Rey, CA 90291 ‘/1) _{,._

11. CONTROLLING OFFICE NAME AND ADDRESS Pree 12. REPORT DATE
Defense Advanced Research Projects Agency ,//6/ Marei2¥981
1400 Wilson Blvd. " V7 PASTNUMBER OF PacEs
Arlington, VA 22209 65

T4, MONITORING AGENCY NAME & ADDRESS(/! dilferent from Controlling Otfice) | 16. SECURITY CLASS. (of thia report)
....... Unclassified

T82. DECL ASSIFICATION/DOWNGRADING |
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale;
distribution is unlimited. . s

17. DISTRIBUTION STATEMENT (of the adbatract entered in Block 20, it different from Report)) W 2

19. KEY WOROS (Continue on reverse side if y and identify by block number)
abstract data types, algebraic axiomatic specifications, Alternating Bit

protocol, natural-deduction theorem-proving, protocols, specification,
state transition models, verification

20. ABSTRACT (Continue on reverse side if necesaary and identify by block number)

A
(OVER)

yons 1473 eoimion oF 1 nov 68 1s oBsOLETE

8/N 0102-014- 6601 ORITY CLASSIFICATION OF This PAGE (When Dote Bt
SECURITY CLASSIFICATION OF THIS PAGE (When Date Bnteved)

UNCLASS IF IED oo

.

deeamhie sz

i"’ -

UNCLASSIFIED
\ucwnrv CLASSIFICATION OF THIS PAGE(When Data Entered)

N

It is becoming increasingly important that communication protocols be formally
specified and verified. This report describes a particular approach--~the
state transition model——using a collection of mechanically supported
specification and verification tools incorporated in a running system called
Affirm. Although developed for the specification of abstract data types and
the verification of their properties, the formalism embodied in Affirm can
also express the concepts underlying state transition machines. Such models
easily express most of the events occurring in protocol systems, including
those of the users, their agent processes, and the communication channels.
The report reviews the basic concepts of state transition models and the
Affirm formalism and methodology, and describes their union. A detailed
example, the Alternating Bit Protocol, illustrates various properties of
interest for specification and verification. Other examples explored using
this formalism are briefly described and the accumulated experience is
discussed.

\

- ..

- -
S S

)

PP

Accession For
1S GRARI

pTricC TAD
Unannounc® 4)
Justification__,__,_._—a
‘
T —
e ——
BY———
Distributicn/) o
\va 11ity Codes{ L

1

UNCLASSIFIED
STCURITY CLASSIFICATION OF THIS PAGE(When Dot Bntored)

ISI/RR-81-88

March 1981

David H. Thompson
Carl A. Sunshine
Roddy W. Erickson
Susan L. Gerhart
Daniel Schwabe

N Specification and Verification of

Communication Protocols in AFFIRM
Using State Transition Models

INFORMATION SCIENCES INSTITUTE

R
4676 Admisalty Way/ Marina del Rey[California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511
R

This research is supporied by the Defense Advanced Research Projects Agency under Contract No. DAHC1S 72 C 0308. Views and conclusions
contained in this report are the suthors’ and should not be Interpreted s representing the official opinion or policy of DARPA, the U.S.
Government, or any Perecn or agency connected with them.

This document is approved for public release and sale; distribution is untimited.

1. INTRODUCTION

1.1. State Transition MOdelSttt i ie i ittt it s erer et rnnnnenaesenss 2
1.2. Specification and Verificationin Affirm iiiiiii ittt 3
LI 0 v T - Yo (o 3
122, Theorem Proving.covt ittt ittt ittt errnseansraconsroenannnnons 5
B I TR o T o 7 ‘
1.3.1. Protocol Specificationcoiiiiiiiiii it i it ittt et 7 i
1.3.2. Protocol Verificationttt i it i it i it et ta e, 8 |
1.4, REIBIBA WOIK oottt ittt ittt eeeeeneeteneeneaneonasessnsensenennns 9 :
2. AN OVERVIEW OF OUR METHOD OF PROTOCOL SPECIFICATION AND VERIFICATION. 10
3. A SERVICE SPECIFICATION FOR A SIMPLEMESSAGE SYSTEM........ccciiviiiannninnn, 12
3. State Variables it it i i i et et ettt eaaes 12
B2 At TraANS I ONSttt it i it et e e et aae, 12
3.3. Behavior of the SimpleMessage System oot iieniiiinr it tetieernneennenns 13
3.4. Converting State Transition Specificationsto Affirmccciiiiviinen.. 14
3.4.1. State Transition Function = CONStructorcovvieiinenriiineernnenanns 14
34.2.State Variable — SeleCtoroiiiiii i i i it ii ittt i 14
1 3.4.3. Transition Definition = Set of AXiIOMScoviiiiviiiiiiiieeiieeneernnnens 14
3.5.The Affirm Representation.cooiviiitiiiiiinetineinerenasoarncsesennnees 15
3.6. Properties of aSpecificationciiiiiiiiii i i it e i e e, 16
3.7 Alternative NOTAtIONScciiitiiiiiieiisietiireneesersnsosonsocesnnsecennes 18
. 4. VERIFICATION ISSUES . . . ottt tetiieeetteeeine et eentsieenananesninseesnnnees 19
4.1. Verifying Properties of a Specification............ccviiiiiiiieiirineeeenninennnsensss 19
4.2, Verifying the Protocol against the Service Specification................c.coieiviien. 20
4.3. Verifying a Program against the Protocol Specificationcovvvivvniennn. 22
5. DETAILED EXAMPLE: THE ALTERNATINGBITPROTOCOLcciviiviinneirennnnnns 23
5.1. ABrief Description of the Protocolcoiiiiiiir it iiiiiiirieierereerennnnnas 23
5.2. A State Transition Machine for the Alternating BitProtocol, 24
5.2.1. Data Types Used inthe Specification............coiiiiiiieineeniarrrennerennn. 24
5.2.2.5tate Variables. it i e ittt e 25
5.23.State Transition FUNCHONS it ittt et iiir it eeernennrrrennnnns 26
5.3.The AffirmRepresentation................ccieviinnennn ot teeteetteereneeannena 27
5.4. Verifying the Protocol against the Service Specification......................... ... 28 P
5.4.1.8af0tYttt e e et ir et eeaas 28 3
] 542, LIVBNOSS ittt et ar e e e e 31
5.5. Protocol Properties and Invariantscciiiieeiiennnreveneerrnsncesonns 32
5.6. Implementationccovii ittt i i i i i it re et et e 32

"

6. FURTHER APPLICATIONS

6.1. Stenning’'s Data Transfer Protocolo iiiiienrrrieerereerennnsnnennnns 34
6.2 TraNSPOMt SBIVICEot ittt it etr i ieenititretaterereeasonunesenesnannsonannns 34
6.3. Selective Repeat Trangport Protocoloovv ittt ieierirnennnsinennnnnassnns 35
6.4. Connection EStablishment Protoco)ovvtiiiiitiiii i iiitiensernnnasonnonss 35
7. PROBLEMS AND EXTENSIONSt ttiiiiieriieeertannitesnersresseneassoerosensas 36
7.1. Composition of Specifications.coiiiiiiiiiiii ittt 36
7 2. COMCUITBNICY & .t ittt vttt tnnnnnsensesnasetnnesssseeseesseanosnnnsossnnsnnseses 36
< I 3 T (T - 37
7.4. Specification and Verification of Systems with More than Two Interacting Entities. 37
7.5. Higher Level Protocols.o viiiiiii ittt iiiii et e tenneneneeenronnonean 38
B. O ON CLUSION ittt iiititereittaeenisrssteeearsssosasesaosnsnsnsasssnnoessns 39
APPENDIX I. DATA TRANSFER SERVICE SPECIFICATION.civiiie it iii e 40
APPENDIX Il. THE PROTOCOL REPRESENTATIONo ottt inie i iinnaenreerennnnnnnns 42
APPENDIX lil. SERVICE AXIOMS — PROTOCOLTHEOREMScciiiiiiiniiiinnnnnns 48
lil.1. The Correspondence between the Serviceand theProtocol...................ccc.... 48
#il.2. Correspondence of States Between Serviceand Protocol................cceveeennnn. 48
1i1.3. Example: Mapping Two Service Axioms into Protocol Theoremscc.... 49
Ii1.4. Eftects on State Variablesby Uger Operations.cociiviriiiiienrerneennenn 50
111.5. Effects on State Variables by SpontaneousOperations..............cccoeeevvvvennnn. 51
I11.6. The pext-state Transitionsforall Operations.ccoviiiiiiiiieriniiinnnnnnn 51
APPENDIX IV. IMPLEMENTING PROCEDURES AND ASSERTIONS.ccivvvvvennn.. 53
IV.1. Asserted Proceduresforthe Sender.coiviiieniieennnnrerennnnoneenss 53
IV.2. Asserted Proceduresforthe Receivercocviiiiiivrreieneenennnnannes 54
IV.3. Definitions forthe ASSertionS.c.ceitiiiiiiiiieerrieerertesensareasannnss 55
IV.4. Context in Which the AssertionsareDefined...............c.ciiiiiiiniiiiiiinnennn. 56
REFERENCES.ottt tittennrneerensenansssnteersnssnsassesasnsosennanneans 57
FIGURES
Figure 1-1: A Simple MesSage SYSIBMvuiveeiveeieosroerersvesesrnnsanonnanseses 3
Figure 1-2: The internal structure of the servicemachine..............cccoieiieiieninnannnn. 8
Figure 2-1: The steps in protocol verificationccoiiiiiiiiiiiiiiiiiiinnan,

Figure 5-1: The protoco! state transition Machingccviivirrriiirerenrcnnnsnnss
Figure 5-2: The correspondence between service and protocol-level state variables

1. INTRODUCTION

When we send electronic mail, funds, or programs to another site, we expect many things to
happen: the message should be delivered to a particular site and not to others; only one copy of the
message should be delivered; the delivery should be timely; the receipt should be acknowledged; and
so on. In computer science terms, these properties are often called safety (correct delivery), liveness
(eftective work being done), and performance (work being done fast enough). The social importance
of guaranteeing these properties for electronic media cannot be over-valued: our dependence on
such systems increases daily.

Over the past few years, the Internetwark Concepts Research project at IS| has been studying the
overall problem of protocol verification, as well as the design of correct protocols. Simultaneously,
the ISI Program Verification project has been developing a general-purpose specification and
verification system called Affirm. This report presents the results of joint research over a year's time.
Specific accomplishments include increased understanding of an underlying formalism (state
transition models), rendering of such models in the specification language of Affirm, experimenting
with various ways of expressing the three properties mentioned above so that they can be proved for
state transition specifications, study of several levels of specification (all the way from the user
services down to the programming language implementation), an in-depth study of a particular
protocol (the Alternating Bit protocol), and a survey of a number of other protocols. Our overall
accomplishment is a general method of specifying and verifying certain aspects of protocols,
supported by mechanical assistance. Most of our work has focused on safety properties, rather than
liveness and performance properties.

Because we expect at least one of the three areas of communication protocols, state transition
machines, and abstract data types to be new to mos, readers, we have included an introduction to
each of these topics in this chapter. The main bulk of the report presents a rather simple example of
the integration of these concepts. Thus the emphasis is on methodology rather than the results
obtained for a particular protocol. Later work [42] will present extensive concrete results on
protocols of more practical interest.

Our general method of protocol specification and verification is summarized in Chapter 2. Details
of the specification method are illustrated in Chapter 3. Verification issues are considered in Chapter
4, The method is applied to the Alternating Bit protocol in Chapter 5. Chapter 6 summarizes some of
the results obtained with more complex protocols. Extensions and problems are analysed in Chapter
7. Our conclusions are presented in Chapter 8.

INTRODUCTION

1.1. State Transition Models

A variety of methods for modeling the behavior of systems in terms of state transitions have been
developed, including finite state automata (FSA) and abstract machines. The key components of
these models are as follows.

1. A set of commands (also called inputs or events).
2. One or more state variables, collectively called the state.

3. A transition function
(command X state) — state.

4. An initial state (assigning initial values to all the state variables).

Each command is a single state transition function mapping the current state into a new state.
Generally, commands are considered atomic operations that are processed sequentially: no
concurrent commands are allowed.

A state transition machine operates by starting in its initial state. At unspecified times, the state is
transformed by one of the state transition functions (or an input "appears,” and is used by the overall
transition function to effect a state change). The machine may be designed to operate forever, or may
have a specified set of final states. When one of these states is reached the machine is considered to
have haited.

Within these basic guidelines, there are a number of possible variations. State variables may be
defined as value-returning functions. The commands mhy have parameters. The effects of
commands may be made visible to the outside world (i.e., the users of the machine) by defining some
of the state variables to be visible, or by producing explicit outputs as additional effects of an
operation. Exceptional conditions may be specified where a given command has no effect on the
state of the system except to produce an error indication or output to the invoking user. if the data
types of the state variables are unbounded (e.g., a queue), the model may not have a finite number of
states.

State transition models are often written graphically, with circles representing states and arcs
representing transitions. Each arc is labeled with the command causing the transition. Outputs
produced are also written on the arcs if needed. Fig. 1-1 gives an example of a state transition model
for a very simple message system allowing only a single message in transit from sender to receiver.
(This example is explained further in Chapter 3.)

i L)

SPECIFICATION AND VERIFICATION IN AFFIRM

InitializeService

l
r——» ReadyYoSend ——w

! UserSend (MsG)
B%iii:i_cgzglge BUFFER ¢+ Empty o MSG
SENT e SENT o MSG

Acking Sending
UserReceive SendComplete

RECEIVED « RECEIVED © MSG

ReadyToReceive

Figure 1-1: A simple message system

1.2. Specification and Verification in Affirm

Affirm [31, 9, 50] is an experimental system for the algebraic specification and verification of user-
defined abstract data types. The heart of the system is a natural deduction theorem prover for the
interactive proof of data type properties. (These properties are stated in the predicate calculus
extended wi 1data types.) Programs, written in a variant of Pascal extended with data types, may be
verified using the inductive assertion method [8]. Additional features include tools for the analysis of
algebraic specifications, a library of useful data types, and user interface facilities. Experience
includes extensive experimentation with data type specifications, verification of small programs, the
specification and partial proof of a large file-updating module, and the proof of high-level properties
of protocols and security kernels.

The specification and theorem-proving portions of Affirm are relevant to the current discussion.

1.2.1. Data Abstraction
As Guttag has explained [14, 15, 16], a data type is specified by first defining three sets of
functions:
1. Constructors. These functions create values of the type. Their range is the data type being

specified. All values of the type can be described in terms of a some functional compaosition of
these functions.

i :!nli'i .r'.‘,px RRTCHI g CatamA UMMV E s gt .l - L

L A w2t S SR RV

R S

A s

4 INTRODUCTION

2. Extenders (or Modifiers). These functions also have the data type being specified as their
range, but in contrast to the constructors, they are not needed to express values of the data
type. (These functions can be expressed in terms of the constructors.)

3. Selectors (or Predicates). These functions yield values of types other than the one being
specified. The general term is selector, but functions yielding values of type Boolean are often
termed predicates.

For example, the constructors of a queue are NewQueue (the empty queue) and Add (appends an
element to a queue). Example extender functions are Remove (deletes the first element from a
queue) and Append (concatenates two queues). Example selector functions are Front and Length.

Example predicates are in and nodups (asks whether there are any duplicate elements).

declare q, 91, g2: QueueOfinteger;
declare i: Integer;

interfaces NewQueueOfinteger, q Add i, Remove(q), Append(q1, q2): QueueOfinteger;
interfaces Front(q), Length(q): integer;

interface iin q: Boolean,

The effect of such a specification is to view values of the type in terms of the constructors that build
them. All selectors and extenders are defined in terms of these constructors. For example, the queue
of integers

1,2,
is represented (in infix form) as
((NewQueueOfinteger Add 1) Add 2) Add 3

Thus the first part of a specification gives the names of all operations, their domains, and their
ranges (e.g., the gyntax of the type).

The second part of a data type specification provides semantics for the operations. Extenders and
selectors are defined by equational axioms relating how each function behaves when applied to each
of the constructors. (Constructor functions are treated as primitive, unspecified operations.) These
axioms look like equations but are treated by Affirm as left-to-right rewriting rules. Various methods
are used to check the consistency and completeness of the axioms [30, 31). For example, some
axioms from the type QueueOfinteger are:

axioms
Remove(NewQueueOfinteger) = = NewQueueOfinteger,
Remove(q Add i) = = if @ = NewQueueOfinteger
then q
eise Remove(q) Add i,

DATA ABSTRACTION 5

Length(NewQueueOfinteger) = = 0,
Length(q Add i) = = Length(q) + 1

Append(q. NewQueueOfinteger) = = q,
Append(q1, 92 Add i} = = Append(q1, g2) Add i,

An important use of these data type specifications is to obtain levels of abstraction, in particular, to
avoid low-level implementation details. For example, in our specification of a queue we don't care
whether it is implemented with an array or via pointers and a linked list. Of course, implementation
details do constrain the abstraction, e.g., by space limitations, but this is a separate problem. A
standard method for relating implementations to their abstractions is the representation (or
abstraction) function rep mapping from implementation to abstraction [22,52]. For example, we
might define a function

rep(a,ib,ub) = = iflb>ub
then NewQueue
else rep(a, Ib, ub-1) Add a[ub]

to map from an array a over the sequence of (integer) indices Ib to ub into queues.

The proof of correctness for an implementation involves showing that all abstract operations of
interest have code that computes, via the rep function, the proper function. For example, we might

have a procedure
procedure Removelmplementation{var a: Array; var Ib, ub: integer);
pre wi(a, b, ub);
post wf(a, b, ub) and rep(a, Ib, ub) = Remove(rep(a’, Ib’, ub'))
... body of procedure ...

where the primed notation x' denotes the initial value of x at the start of the procedure. The
expression "wf(a, Ib, ub)” is the implementation (or concrete) invariant well-formed, a predicate
showing that the variables of the implementation will always map into some abstract object. In the
inductive assertion method, the interpretation of the pre and post conditions is as follows. If the
precondition holds for the variables at entry to the procedure, then the postcondition will hold for the
variables at procedure exit. Note that there is no statement that the procedure terminates.

1.2.2. Theorem Proving
Typical data type properties might include “the length of the concatenation of two queues is the
sum of their lengths,” stated as
Length{q1 Append q2) = Length(q1) + Length(q2)
and "The length of any queue is always nonnegative":
Length(q) 20

N Mt b A Sl O, RSl s 1 A .l b ot 5 e M AIAN Ly

6 INTRODUCTION

Such properties are proved by induction based on the constructors of the data type, that is, using
structural induction. For our Queue example, the induction schema uses the inference rule

W fin r llq, i(P P
(alt g (P(Q))

In other words, we prove the property P for NewQueueOfinteger and then, assuming it for some
queue q, prove P for g with any element i appended to it (g Add /). These two prools suffice to prove
P for all q.

Affirm's style of theorem proving is interactive. The user develops the proof; the system's role is
to follow the user's commands and provide various kinds of necessary information and checking. It
does not attempt to search for a proof. Affirm simplifies propositions using the data type axioms (as
rewrite rules), with built-in simplification procedures for the predicate calculus. The user can ask the
system to employ induction, split into subgoals, substitute equalities, and apply lemmas;
experimentation with various strategies is often necessary before finding a proof. This
experimentation and backtracking is supported with a model of the proof as a forest oi proof trees,
and with numerous display and query features.

The overall effect is that the user follows the usual mathematical proof methods, but Affirm carries
out the mechanics of the proof (down to the axioms or assumptions). Of course, proofs are not
ironclad: there might be a bug (in either our code or the underlying Interlisp system),’ or the user
might make an invalid assumption. Affirm is used to produce better, not guaranteed perfect, proofs.
Such proofs should also be readable (when properly structured in terms of lemmas) and read to be
believed.

A more serious problem is that of ascertaining that we have proved (or are trying to prove) what we
really want proven. Experience has shown repeatedly that propositions we thought were theorems
were not; this quickly led us to the conclusion that "the purpose of proving (with Affirm)is to turn a
coniecture into a theorem.”

1‘I’o our knowledge, Affirm has never generated an invalid proof; we consider it unlikely that an error would produce just
the right behavior to validate an incorrect theorem, particularly since the user would probably note associated strange
behavior. The usual result of a bug is to prevent a valid proof from proceeding. However, soundness cannot be guaranteed.

y

e T e SV,

PROTOCOLS 7

1.3. Protocols

In order to apply state transition models and abstract data types to communication protocols, we
must first understand specification and verification problems in the protocol domain. The meaning of
protocol specification and verification will be described in terms of a model first introduced in [47].

1.3.1. Protocol Specification

A user's interest in a protocol lies in what kind of services it provides. Usually the service involves
interactions with other entities (such as users or programs) in order to get certain functions
performed. For example, one user may wish to interact with another (remote) user by performing
various functions such as SendMessage. How these functions are actually performed by the protocol
is not really ot concern; only the end result matters.

Users, then, can regard the protocol as a black box, to which one gives a series of commands in
order to get certain services performed. The description of this machine is termed the service
specification. One theorem we may wish to prove about a service specification is that the messages
received constitute an initial subsequence of the messages sent (i.e., messages are not delivered in
the wrong order, or garbled, nor are messages spontaneously delivered if they were not sent).

in general, the components used to provide the service can also be regarded as black boxes in
their own right. In the case of protocols there is always more than one entity interacting (because we
are dealing with distributed systems). In order to provide a given service, it is necessary to have
several stations (at least one for each physical site) inferacting with each other via some transmission
machine (see Fig. 1-2). The pattern of their interactions constitutes the protocol.

This transmission machine is just another level of protocol. Thus we can see a hierarchy of
abstract machines developing. In this uses hierarchy (foliowing Parnas [36]), each protocol level
makes use of the services provided by the lower level. Within each level, there is an implementation
hierarchy where the service is logically implemented by the abstract protocol specification. The
protocol is implemented in turn by an actual program. Thus for each protocol level N, the following
information must be provided:

1. A service specification, describing the services provided by the level to the users above, at level
N+1,; '

2. A protocol specification, describing the interaction of the objects in this level in a precise way
(assuming services provided by the level below, level N - 1); and

3. A program implementing each station in the level (of course, the program may vary from station
to station).

8 INTRODUCTION

USER USER
: Service :
: Machine :
: | station station :
Transmission :
: Machine :

200000000000 0000000000000000000000000000008000000s

Figure 1-2: The internal structure of the service machine

This characterization follows closely the model for open system interconnection being proposed by
the International Organization for Standardization [23].

1.3.2. Protocol Verification
In the context of the model introduced in the previous subsection, we say that protocol verification
is a formal demonstration that the logical design of the protocol (the interaction of the stations within

one layer) satisfies the service specification of that layer.

Note that this will depend on the assumed properties (the service specification) of the layer below.

The ultimate task in protocol verification is to demonstrate that an actual program is a valid
implementation of the protocol specification. That is, when one has reached a low enough level of
abstraction in the specification, it is possible to take an actual program that purportedly implements
the protocol, and show that it is correct with respect to the specification. This is no different from
traditional program verification.

In order to gain greater confidence that specifications are suitable for their intended use, it is useful
to prove properties of a single specification. For example, we might want to show that the sequence
of messages delivered is equal to the sequence of messages sent. Liveness properties such as
freedom from deadlock or eventual termination are also often proved for a single specification. We
will discuss these issues at greater length in Section 3.6.

v v

A g <A SOOI e . MO D T i3 01 My

D 2

i o S ke L A,

PROTOCOL VERIFICATION 9

Thus we have three major types of protocol verification problems in each layer of a system:

1. Verification of the protocol against its service;
2. Verification of an implementation against the protocol; and

3. Independent verification of desired properties of the service, protocol, and program.

1.4. Related Work

To our knowledge, this work is the first combination of state transition machine, protocol, and
axiomatic specification notions. However, a large body of work exists in each of these areas
individually, and to a lesser extent for each pair.

A variety of methods have been used to specity communication protocols, including Petri nets (and
related graph models), formal languages, sequencing expressions, 1/0 histories, and programming
languages. However, the variations on state transition machine methods discussed in Section 1.1
seem to be most popular. Much of this work is either limited in expressive power (e.g., finite state
automata) or lacking a solid theory and automated tools for verification. Sunshine [48] provides a
survey and comparison of this work.

In the area of abstract data types, a large body of work also exists [14, 15, 10, 11, 28]. Usually state
transition machine (or abstract machine) model approaches and axiomatic approaches are viewed as
mutually exclusive alternatives [18, 4, 26). A number of state transition machine models have been
proposed {34, 39, 37, 4, 38, 27]. Several variations of axiomatic methods have also been developed
[16,25,12]. The notion of specifying state transition machines axiomatically seems relatively
unexplored, although Flon and Misra {7] hint at it.

We have drawn heavily on the following concepts:

- Hierarchical layering and cooperating remote stations within a layer from the protocol domain
[47, 23);

- Verification of the properties of a specification [15, 18, 32, 38, 6, 19, 20, 35); and

- Verification that a lower level system properly implements a higher level one [40, 37, 17, 18], or
that the two systems are behaviorally equivalent [4, 45].

Of course, we have had to adapt these concepts to the new environment resulting from the merger of
protocol, state transition machine, and axiomatic specification concerns,

10

2. AN OVERVIEW OF OUR METHOD OF PROTOCOL
SPECIFICATION AND VERIFICATION

Our method of specifying and verifying protocols can be summarized as follows:

; 1. Produce a service specification. If a state transition machine description of the service already
i exists, translate it into an Affirm representation. Otherwise directly state the service
¥ specification as a state transition specification in Affirm.

2. Validate that the service specification at least partially meets the requirements of the user
(either the ultimate user or another layer). Typically this involves proving some invariant
propedies of the specification, e.g., what gets sent by the user at one station gets delivered to
the user at the other station in the same order.

3. Produce the protocol specification. Again, if a state transition machine representation exists,
simply translate it into an Affirm representation.

4. Verify that the protocol specification implements the service specification. This is a two-step
process.

' a. First, define a correspondence (a rep function) between the state variables of the two
specifications.

b. Then show that the -axioms of the service specification, when reformulated using the
corresponding data structures of the protocol specification, are theorems provable from
the axioms of the protocol specification.

A further validation involves independently stating the service requirements in terms of the state
variables of the protocol specification, and then proving that the protocol specification satisfies
these requirements.

-‘ 5. Specify an algorithm implesnenting the protocol specification.

6. Verify that the algorithm implements the protocol.

Chapters 3, 4, and 5 discuss these steps in some detail. Figure 2-1 displays the relationship of the
elements involved in protocol specification and verification.

1"
3
! (§3.3, 4.1)
} v
¢ Service (§3.1-§3.56) — Data Transfer Property (§3.6)
(§4.2, §6.4)
Z Protocol (§6.1-§6.3)— Transformed Data Transfer Property (§5.5)
(§4.3)
Program (§5.6)
3
X Figure 2-1: The steps in protocol verification
¢ The references prefaced by "§" are pointers to relevant sections of this paper
Vertical lines mean implemented by; :
] Horizontal lines mean invariant of. i
i
¥l
1
¢
}
e b e it Mo e . . v s

- —_ ¢ m——— ——

“77

PINGIL i s, | bt

12

3. A SERVICE SPECIFICATION FOR A SIMPLE
MESSAGE SYSTEM

Perhaps the simplest data transfer service provides for transmission of one message at a time from
a fixed sender to a fixed receiver. The sender must wait until the previous message is received before
sending the next one. There is no possibility of message loss, duplication, or corruption. The system
is shown graphically in Figure 1-1. The next section provides an informal English description of the
state transition machine. We will show how it can be represented in Affirm in the following sections.

3.1. State Variables

There are only a few state variables, each performing a simple function. (Each state variable has
an associated data type, as shown.)

State: ControlState
The current status of the service. This state variable simply cycles through the four values of
the enumerated type Contro/State. The four values of the type are ReadyToSend, Sending,
ReadyToReceive, and Acking (Acknowledging). The state variable State is tested by most state
transition functions as a general applicability test: the transition function will not change the
state unless this variable has the appropriate value.

Sent: QueueOfMessage
The queue of messages that have been sent to the receiver. One of the properties to prove
about this service is that the queue of messages sent equals the queue of messages received
{except for possibly the very last message of the Sent queue, which may not have been
received yet).

Received: QueueOfMessage
The queue of messages thai have been received by the receiver.

Buffer: QueueOfMessage
The queue of messages that have been sent by the sender but not yet received by the receiver.
This state variable represents the channe! of a real protocol. in the current protocol, this queue
is either empty, or has exactly one message in it, the one just sent (but of course we have to
prove it, not just say itl).

The types of the state variables are assumed to be explicitly defined (e.g., type Contro/State), or are

assumed to have a standard definition (as is the case with type QueueOfMessage).

3.2, State Transitions

A few of the state transition functions would be requested by a user, while others would appear to
the user to occur spontaneously. For example, the user would explicitly request the UserSend
operation, but the SendComplete operation, corresponding to the event "message pops out of the

T I = A —

v d——

STATE TRANSITIONS 13

channel at the receiver's end,” would appear to be spontaneous to the user. These spontaneous
transitions are included to explicitly model the delay involved in sending a message. We consider this
to be an important aspect of the service.

InitializeService

initializes the state variables. Sent, Received, and Buffer are all initialized to the empty queue,
and State is initialized to ReadyToSend.

UserSend(message)
Only applicable if State is ReadyToSend; otherwise, this operation is & no-op. Adds messaqas to
the Sent queue, adds message to Buffer, and sets State to Sending.

SendComplete
A spontaneous event (the user cannot directly request it). Applicable only if State is Sending,
i.e., there is an outstanding Send operation to be completed. Sets State to ReadyToReceive.

UserReceive
Applicable only if State is ReadyToReceive. The message at the front of the Buffer queue is
added to Received, indicating passage of the message to the user. State is then updated to
Acking--an abstraction of the process of sending an acknowledgment to the sender, telling of
the receipt of the message.

ReceiveComplete
A spontaneous event, corresponding to the event "sender receives acknowledgment of
message receipt.” Applicable only if State is Acking. A message is removed from Buffer, and
State is updated to ReadyToSend, indicating the cycle is complete.

3.3. Behavior of the Simple Message System

The state machine starts by performing the /nitializeService command. The system then repeatedly
cycles through the four states ReadyToSend, Sending, ReadyToReceive, and Acking. Each of these
four states has only two successor states: itself (when a command that is not applicable is issued, in
which case there’s no change), and the next in the cycle. (Of course, at any time the /nitializeService
command can be re-issued, in which case the machine is reset to its initial state.)

As the system cycles through the four states, it maintains an invariant: the sequence of messages
sent equals the concatenation of the sequence of messages received and the single message
currently being sent (if there is one).2 This and similar properties are called service requirements. If
the state transition machine is specified correctly, these properties are straightforward to verify.

2,imost. We will discuss the correct formulation of this property later.

14 A SERVICE SPECIFICATION FOR A SIMPLE MESSAGE SYSTEM

3.4. Converting State Transition Specifications to Affirm

The Affirm representation of a state transition machine is basically just a representation of the
state vector of the state machine. Each state variable forming one part of the machine’s state vector
becomes a selector function. Each state transition function (command) becomes a constructor.
There are usually no extender functions in this scheme. The axioms simply state how each state
variable is modified by each state transition function.

3.4.1. State Transition Function — Constructor
Each state transition function (command) of the state transition machine becomes a constructor of
an Affirm type.

state machine SimpleMessageSystem;

declare s: SimpleMessageSystem;
declare m: Message;

constructors
InitializeService, UserSend(s, m), SendComplete(s), UserReceive(s), ReceiveComplete(s): SimpleMessageSystem;

Each constructor has as its range the type being defined. And each of the constructors (except the
initialization function) is given a parameter of the type being defined. This parameter represents the
entire state of the system. Thus state or event histories can easily be represented as compositions of
the constructor functions. For example, the sequence of commands representing a machine cycle
InitializeService; UserSend(m); SendComplete; UserReceive; ReceiveComplete
would simply be
ReceiveComplete(UserReceive(SendComplete(UserSend(InitializeService, m))))

3.4.2. State Variable — Selector
Each state variable of the state transition machine becomes a selector function in the Affirm
specification. In the Affirm specification, each function will take a parameter of the type being
defined. Thus each state variable is simply an extraction function of the state vector.
selector State(s): ControiState;

selectors
Butfer(s), Sent(s). Received(s): QueueOfMessage;

3.4.3. Transition Definition —+ Set of Axioms

The preceding subsections paved the way by defining the domain and range information of the
constructors and selectors. Now we must define their semantics. It will become quite clear why each
function carries along the "state” parameter: it provides a natural way of describing a transition. We

s F e

P

R

TRANSITION DEFINITION ~— SET OF AXIOMS 15

will demonstrate the method by writing the axioms for the state variable Sent. From Section 3.2, we
know that the state variable Sent is modified by the /nitializeService operation, possibly modified by

the UserSend operation, and not modified by the remaining operations SendComplete, UserReceive,

and ReceiveComplete.

axioms
1. Sent(UserSend(state, message))
= = if State(state) = ReadyToSend

then Sent(state) Add m
else Sent(state),

2 Sent(SendCompiete(state)) = = Sent(state),

3. Sent(UserRecaive(state)) = = Sent(state),

4. Sent(ReceiveComplete(state)) = = Sent{state),

§. Sent(initializeService) = = NewQueueOfMessage;

Axioms 2, 3, and 4 simply state that the operations have no effect on the state variable. For example,
axiom 2 says "the value of the state variable Sent after a state transition from state state to state
SendComplete(state) is equal to the value of Sent in state state.” Similarly, axiom 1 says “if the state
variable State in state state is ReadyToSend, then the operation UserSend will have an effect on the
state variable Sent; otherwise it won't." This method of constructing a specification ensures that the
specification will be complete--the effects of each command on each state variable are detailed.

3.5. The Affirm Representation

The following is a stylized representation of Affirm input, for the sake of readability. State
transition functions that leave a state variable unchanged are not explicitly specified; the convention
is "not specified, not modified.” The actual Affirm input is displayed in Appendix .

state machine SimpleMessageSystem,

declare s: SimpleMessageSystem;
declare m: Message;

constructors InitializeService, UserSend(s, m), SendComplete(s), UserReceive(s), ReceiveCompiete(s);
selectors Buffer(s), Sent(s), Received(s): QueueOfMessage;
selector State(s): ControiState;

axioms {InitielizeService}
State(initializeService) = = ReadyToSend,
Buffer(initializaService) = = NewQueusOfMessage,
Sent{InitializeService) = = NewQueueOfivessage,
Received(initializeService) = = NewQueueOfMessage;

A SERVICE SPECIFICATION FOR A SIMPLE MESSAGE SYSTEM

axioms {UserSend}
State(UserSend(s, m)) = = if State(s) = ReadyToSend
then Sending
else State(s),
Buffer(UserSend(s, m)) = = if State(s) = ReadyToSend .
then Buftfer(s) Add m H
eise Buffer(s), j
Sent(UserSend(s, m)) = = if State(s) = ReadyToSend !
1 then Sent(s) Add m
eise Sent(s);)
axioms {SendComplete}
State(SendComplete(s)) = = if State(s) = Sending
& then ReadyToReceive
else State(s);
) axioms {UserReceive}
State(UserReceive(s)) = = it State(s) = ReadyToReceive
then Acking
else State(s),
Received(UserReceive(s)) = = if State(s) = ReadyToReceive

then Received(s) Add Front(Buffer(s))
eise Received(s);
axioms {ReceiveComplete} i
State(ReceiveComplete(s)) = = if State(s) = Acking {
then ReadyToSend :
else State(s),
Buffer(ReceiveComplete(s)) = = if State(s) = Acking
then Remove(Buffer(s))
eise Buffer(s);
end {SimpleMessageSystem) ; ;

3.6. Properties of a Specification

To increase our confidence that the state transition machine we have specified is a reasonable
one, we can formulate certain properties we expect to hold during the machine’s operation. These
service requirements may be proved using structural induction as described in Section 1.2.2. We
present an example of such service requirements for the simple data transfer service.

A useful safety property for this service might be:
Sent = Received join Transit
stating that the messages received are equal to the messages sent except for any still in transit. We ’
must be careful in our definition of Transit to take into account the state Acking when the message is

still in Buffer, but has been received. The exact theorem in Affirm would be: {
theorem DataTransferService, all 8 (Sent(s) = Received(s) join Transits(s));

ey

define Transit(s) = = if State(s) = Acking
then NewQueueOfMessage
else Buffer(s);

This theorem has been proved in Affirm.

T SR g & S ¥ 7 e

PROPERTIES OF A SPECIFICATION 17

Another form of the service requirement might be
(State(s) = ReadyToSend) D (Sent(s) = Received(s))
stating that input exactly equals output whenever the system returns to its "idle" state. This turns out
to be a special case of the more general theorem above.

Liveness properties for this simple machine are relatively trivial. It is fairly obvious that the aliowed
progression of states involves a single fixed cycle (ignoring rejected operations having no effects),
where a single message is transferred during each cycle. First, the meaning of "ignore rejected
operations” is formalized, as follows:

interface StripNoOps(s): SimpleMessageSystem;

axioms
StripNoOps(InitializeService) = = InitializeService,
StripNoOps(UserSend(s, m)) = = if State(s) = ReadyToSend
then UserSend(StripNoOps(s), m)
else StripNoOps(s).
StripNoOps(SendComplete(s)) = = it State(s) = Sending
then SendComplete(StripNoOps(s))
else StripNoOps(s),
StripNoOps(UserReceive(s)) = = if State(s) = ReadyToReceive
then UserReceive(StripNoOps(s))
else StripNoOps(s),
StripNoOps(ReceiveComplete(s)) = = if State{s) = Acking
then ReceiveComplete(StripNoOps(s))
else StripNoOpa(s),

theorem StatesMatch, all s (State(s) = State{StripNoOps(s))
and Sent(s) = Sent(StripNoOps(s))
and Received(s) = Received(StripNoOps(s))
and Butfer(s) = Bufter{StripNoOps(s)));

The definition of StripNoOps simply formalizes our intuition about events having no effect because
they occur at an inappropriate time. For example, a SendComplete event after a UserReceive event
can have no effect. The theorem StatesMatch says that the effects of a sequence of events are the
same as the effects of a new sequence that has had the no-effect operations filtered out. This
theorem was proved in Affirm.

in the context of the above definitions, then, the following theorem says that the four operations, in
the right order, add a message (and the correct one) to those received, no matter how many

additional "rejected” operations may have been interleaved.

theorem ServiceProgress, alls1,82, m 3
(StripNoOps(s2) = ReceiveComplete(UserReceive(SendComplete(UserSend(StripNoOpa(s1), m))))
and State(s1) = ReadyToSend ’
imp State(s2) = ReadyToSend
and Sent(s2) = Sent(s1) Add m
and Received(s2) = Received(s1) Add m);

This theorem has also been proved using Affirm.

18 A SERVICE SPECIFICATION FOR A SIMPLE MESSAGE SYSTEM

Finally we note th=t the system will progress around this cycle as long as each operation completes
in finite time. This is an assumption at the service level, but of course it must be proved when we see
how the protocol implements each operation.

3.7. Alternative Notations
Instead of implicitly representing the machine’s state vector, we could have represented it explicitly
by defining gne constructor, say Const. Const takes a number of parameters (one per individual state

variable), and creates one state vector out of them:
. constructor Const(state, sent, received, butfer): SimpleMessageSystem;

The individual state variables are then defined as vector-extractors:

State(Const(state, sent, received, butfer)) = = state,
Sent(Const(state, sent, received, buffer)) = = sent,
Received(Const(state, sent, received, buffer)) = = received,
3 Buffer(Const(state, sent, received, buffer)) = = butfer;]

1 and the state transition functions, nominally constructors, would become extenders:

UserSend(Const{state, sent, received, buffer), message)
= = if state = ReadyToSend
then Const(Sending, sent Add message, received, buffer Add message)
else {no change} Const(state, sent, received, buffer),

SendComplete(Const(state, sent, received, buffer)) ’
= = if state = Sending

then Const{ReadyToReceive, sent, received, bufter)

eise {no change} Const(state, sent, received, buffer), 3

UserReceive{Const(state, sent, received, buffer))
= = if state = ReadyToReceive
then Const{Acking, sent, received Add Front(bufter), buffer)
' else {no change} Const(state, sent, received, buffer),

ReceiveComplete{Const(state, sent, received, buffer))
= = if state = Acking
then Const(ReadyToSend, sent, received, Remove(bufter))
eise {no change} Const(state, sent, received, buffer),

InitializeService = = Const(ReadyToSend, NewQueueOfMessage, NewQueveOfMessage, NewQueuveOfMessage);

This notation often results in fewer axioms overall, but each axiom is usually much more complex
than those of the notation we described above. This is especially true when one state has a large set
of successor states. We have chosen the first notational method for expressing state vectors in
Affirm because of its convenience. The axioms, with a bit of practice, are generally more

understandable because each is relatively simple.

4. VERIFICATION ISSUES

As mentioned in Chapter 1, we would ideally like to verify three kinds of properties of a
specification: safety (only correct things happen), liveness (eventually something happens), and
performance (things happen promptly).

Safety properties are typically proved by structural induction, as was described in Section 1.2.2.
Most of our work has focused on this concern.

Liveness properties may be handled by showing that the system terminates:

1. Some operation is always gnabled, or the system has reached one of its final states; and

2. Each operation decreases some bounded measure function, which at some point (nominally,
when it evaluates to zero) disables all operations (for example, by setting a special state
variable to false; presumably all the operations are applicable only if the variable is true).

This issue is discussed at length in [2]. Temporal logic also provides convenient techniques for
stating and proving liveness properties [20, 33]. We deal only briefly with liveness properties in this
report.

Performance properties have traditionally been dealt with by other methods (e.g., queueing theory);
we have not addressed this issue.

4.1. Verifying Properties of a Specification

As noted in Section 1.2, one of the main capabilities of Affirm is the ability to verify that a data type
has certain desired properties. These properties are specified as theorems and are then proved using
the interactive theorem prover of Affirm.

Typically these theorems are invariants in the state transition model. That is, they are predicates on
the state that are true in the initial state, and are preserved across all state transitions. In Affirm,
these theorems are proved from the axioms of the type being specified (and other predefined types)
by structural induction. In the context of the simple message system of the preceding chapter, to
prove a theorem P(s) for all states s, first prove the theorem P(/nitializeService); then, assuming P(s)
for some state s, prove P(fcn(s)) for each constructor fcn in the type. This suffices to show P(s) for all
s.

It is also overkill. What is proved is that any order of occurrence of the events of the state transition

machine is acceptable; the invariant still holds. Carrying out such a proof requires a ruggedized

20 VERIFICATION ISSUES

machine that has extra tests to ensure that operations invoked at inappropriate times can do no harm:
no state change occurs. Real protocols have (implicit) assumptions stating which operations can
happen when. It is uniikely, for example, that a time-out can occur it there are no messages that have
£y been sent but not yet acknowledged. Thus proving properties of a program that uses an abstract
‘ machine in a certain way may be easier (and allow a simpler machine specification) than proving
properties of the machine for arbitrary programs.

4.2. Verifying the Protocol against the Service Specification
» We must show that the detailed system (composed of stations interacting according to the
protocol) does the same thing as the abstract system (specified by the service: see Section 1.3).

This brings us to the problem of what it means for one abstract machine (or set of machines) to
implement another. There are two aspects of this relationshig:

1. a static correspondence between each state of the higher level and the state(s) implementing it
at the lower level, showing that every higher level state is in fact implemented; and

2. a dynamic correspondence between the transitions of the two levels, showing that the
sequence of states reachable in the two levels are the same.

Point 1 is typically handled by giving a representation function rep from the state variables of the

lower level to the state variables of the higher level. The function is specifically defined in this
direction because there may be several lower level states that all represent the same higher level state
(so the function has no inverse). Also, some lower level states may be jntermediate states that do not
represent any higher ievel state. As noted above, it must be shown that there is some lower level state
to represent every higher level state.

b 4 TP et R

To address point 2, the conventional approach involves specifying a fixed sequence of lower level
operations implementing each higher level operation. Then it must be proved that it the two systems
start in corresponding states, they will end up in corresponding states after corresponding i
operations.

Let S and s be higher and lower level states respectively. Let OP be a higher level operation and op
be its lower level implementation, and let rep be a representation function (from s to §). Then this
method attempts to show that for ach OP

V S, s(S = rep(s) D OP(S) = rep(op(s)))

The difficuity of this approach in the protocol domain is that a higher level operation such as

VERIFYING THE PROTOCOL AGAINST THE SERVICE SPF(* (CATION 21

sending a message may be accomplished by a nondeterministic sequence of lower level operations,
including transmission, loss, time-outs, retransmissions, and receptions. Typically there will be a
single low-level operation that starts the accomplishment of the higher level operation by "posting”
some work to be done. This will then be followed by a nondeterministic series of lower level
operations, invisible at the top level, that complete the results of the higher level operation in the
unreliabie low-level environment. These latter effects may be viewed as one or more spontaneous
transitions of the higher level machine. Section 5§ gives an example of this sort.

In this type of lower level specification, there are two sorts of operations: one set invoked directly

by the users of the system (corresponding to the higher level operations), and a second set of internal
operations.

Verification of this type of lower level specification is similar to the conventional situation discussed
above, but must be augmented by a proof that the spontaneous higher level transitions (and only
such transitions) are accomplished by the internal operations of the lower level. This additiona!l prooi
is facilitated by defining the internal operations in a ruggedized fashion that includes tests in their
definitions to force them to produce no changes if invoked at inappropriate times. The additional
theorems to be proved take the following form: From any low-level state corresponding to a higher
level state with spontaneous transitions, the next lower level state that "maps up" and can be reached
by any sequence of internal lower level operations must correspond to the correct higher level state.
We can define this recursively as follows.

YV S such that S has one or more spontaneous transitions
(V ssuchthatS = rep(s)
(SpontSucc(S) = rep(UpSuccessors(s, S))))

where rep is extended in the natural manner to sets
SpontSucc(S) is the set of states reached from S by spontaneous transitions
UpSuccessors(s, S) =
{s2: Successor(s, s2) and MapsUp(s2) and S # rep(s2)}
U UpSuccessors(s3, S5)
Vs3: Successor(s, s3) and ~MapsUp(s3)
Successor(s?, s2) = 3internalOp such that (s2 = internalOp(s1))
MapsUp(s) = true if s represents some high-level state

This general formulation often simplifies considerably, as shown in the example in Chapter 5.

LA,
i e 2 e s

pasa

22 VERIFICATION ISSUES

4.3. Veritying a Program against the Protocol Specification

If we followed the pattern of the lower level (protocol) and higher level (service) specifications
discussed above, each operation of the protocol specification would be implemented by a separate
Pascal procedure. However, an actual implementation of a protocol is somewhat more constrained.

A state transition machine defines a global state and specifies how transitions change the state
variables. Since the purpose of protocols is to provide for communication between disjoint
processes, an actual implementation will be divided into cooperating stations (as described in Section
1.3); only the state variables describing the communications medium will be shared between stations.

Since losses are a spontaneous behavior of the medium, they are not implemented.

While it was convenient for our specification to allow operations to be invoked in any order, only
certain sequences of operations are efficient. (For example, it makes little sense for the sender to
retransmit without first checking for acknowledgments.) Therefore the programs typically exhibit only
a subset of the allowable behavior. The intention is that only inefficient event sequences have been
omitted.

Of course, many properties of states proved at higher levels may be transferred down to programs.
However, the constraints introduced by the program may require additional proofs for liveness, e.g.,

the constraints do not introduce deadlock.

P VR P

5. DETAILED EXAMPLE: THE ALTERNATING BIT
PROTOCOL

We will continue the exposition of our methodology, using the Alternating Bit protocol as an
example. First we will specify a protocol providing the simple data transfer service described earlier.
We will then perform the various verification tasks.

5.1. A Brief Description of the Protocol

The Alternating Bit protocol [1, 5, 21, 20, 6] is intended to provide a simple but reliable message
transfer service over an unreliable transmission medium. It attaches a one-bit sequence number to
each message sent, and waits for an acknowledgment of the receipt of the message by the
destination. The sequence number is complemented on each new message sent--hence the name of
the protocol. If the acknowledgment is not received within a time-out period, the message is
retransmitted (with the sequence number unchanged). The protocol guarantees correctly sequenced
delivery of messages even if the medium loses messages and acknowledgments, but the medium
cannot reorder messages.

To accomplish these functions, the sender and receiver stations maintain local sequence number
counters. The sender uses its counter to remember the sequence number to attach to the next
transmission. The receiver uses its counter to remember the sequence number of the next message it
expects to receive, thus allowing for the removal of duplicate messages (which will be sent if an
acknowledgment is lost).

The Alternating Bit protocol is a simple instance of a general class of data transfer protocols using
positive acknowledgments and retransmission on errors [46, 44, 24]. This simple example allows only
one unacknowledged message to be transmitted at a time. More complex protocols in this class use
larger sequence numbers and allow multiple outstanding messages.

In Section 5.2 we provide an informal definition of a state transition machine for the Alternating Bit
protocol, and in Section 5.3 this specification is translated into an Affirm representation. We then
discuss the major verification step, showing that the protocol implements its service correctly. We will
then discuss an important invariant of the protocol specification (independent of the service). Finally
we give algorithms for the sender and receiver stations, and show that these algorithms properly
implement the protocol.

24

5.2. A State Transition Machine for the Alternating Bit Protocol

The protocol machine described in this section closely parallels the service machine described in
Chapter 3, with the addition of details concerning the internal operation of the protocol. The protocol
is defined as a single machine rather than as separate sender and receiver components (see Section
7.1). Figure 5-1 illustrates the main data structures and operations of the protocol.

DETAILED EXAMPLE: THE ALTERNATING BIT PROTOCOL

ProtocolSend

Sent

>

Sender
To
Receiver

Lo-se
Packet

'y Retransmit

Pending

o

ReceiveAck

SSN

i Message

contents.

operator "~".

!

N

A l ReceivePacket

Received

Y

]

Receiver

Buffer

Receiver

To

Sender

LosaAck

L

5.2.1. Data Types Used in the Specification

The protocol uses a few more data types than the service specification does. Their informal
descriptions are gathered here for convenience.

Deliver

RSN

Figure 5-1: The protocol state transition machine

As in the service specification, this type is a minimally defined data type that represents abstract

Bit An enumerated type with two elements, arbitrarily called gn and gff. Functions include a "flip”
operation that flips the value (from gn to gff or vice versa), represented by the unary not

RSP,

ot (iR

P

RS-

DATA TYPES USED IN THE SPECIFICATION 25
Packet
A record (or tuple) with two components: a value of type Bit (i.e., a sequence number) and a
value of type Message.
Medium

Really a QueueOfPacket with the addition of operations to "lose"” packets. Further
enhancements (e.g., to allow the reordering of packets) might be desired in a more realistic
medium. The channels of the protocot are of this type. The Transmit operation takes a value of
type Medium and a value of type Packet and yields a value of type Medium. it thus corregponds
to the Add operation of the Queue type. Similarly, Receive corresponds to the Queue operation
Removae.

QueueOfPacket, QueueOfMessage, SequenceOfMessage
Standard data types from the Affirm Type Library.

5.2.2. State Variables

SenderToReceiver: Medium
The channel from the sender to the receiver.

ReceiverToSender: Medium
The channel from the receiver to the sender. For convenience, entire packets are returned as
acknowledgments, rather than just the sequence numbers.

Pending. QueueOfPacket
The packet currently being transmitted, if any. Pending is either empty (i.e.,
NewQueveOfPacket), or contains exactly one packet. A queue type was used instead of a
simple packet in order to avoid notions of a null packet, and to aliow future extensions.

SSN: Bit
The sender's current sequence number (i.e., the next acknowledgment of interest).

RSN. Bit
The receiver's current sequence number (i.e., the number of the next packet expected).

ReceiverBulfer. QueueOfPacket
The packet received but not yet delivered to the user (if any). ReceiverBuffer is either empty, or
has exactly one element. A queue type was used for convenience.

Sent: SequenceOfMessage
A sequence of all the messages sent but not necessarily acknowledged yet. (This variable
would not be present in a real implementation; it is for specification purposes.)

Received. SequenceOfMessage
A sequence of all the messages successfully received. (This variable would not be present in a
real implementation; it is for specification purposes.)

26 DETAILED EXAMPLE: THE ALTERNATING BIT PROTOCOL

Of course, not all these data structures are visible or available to both stations (sender and

’

receiver).

5.2.3. State Transition Functions

InitializeProtocol
Set the counters and the queues to their initial values.

ProtocolSend(m)
Given a message m, try to send the message as a packet. It no message is waiting to be
acknowledged (Pending = NewQueueOfPacket) then accept the message m (by appending it
to Sent) and transmit it (by constructing a packet with the current SSN and adding the packet to
SenderToReceiver). Also remember that the packet is waiting to be acknowiedged (by putting it
in Pending).

ReceivePacket
Receive a packet, if one is available. |f SenderToReceiver is nonempty, remove and examine
the first packet. If it is the one expected (its sequence number matches RSN), then place it in
ReceiverBuffer and flip RSN. |f the packet has glready been delivered, then send an
acknowledgment by copying the packet to ReceiverToSender.

Deliver
Deliver a new message (if there is one to be delivered) to the user. If a message is available in
ReceiverBuftfer, append it to the Received queue, and acknowledge the message (by copying it
to ReceiverToSender). Clear ReceiverBuffer.

ReceiveAck
Receive an acknowledgment, if any exists to be received. If ReceiverToSender is not empty,
then remove the first packet. If the packet's sequence number doesn’t match SSN, then ignore
the packet. Otherwise, flip SSN and empty Pending (preparing for another Send operation).

Retransmit
Add the message in Pending, if any, to SenderToReceiver, i.e., re-send it.

LosePacket
Lose a packet by removing the front packet from SenderToReceiver, if it is not empty.

LoseAck
Lose an acknowledgment by removing the front of ReceiverToSender, if it is not empty.
As an example, a typical state of the system might be
ReceiveAck(Deliver(ReceivePacket(ProtocoiSend(InitializeProtocol, m))))
This represents the sequence of operations (reversed from their functional representation)

InitializeProtocol; ProtocolSend(m); ReceivePacket; Deliver; ReceiveAck

THE AFFIRM REPRESENTATION 27

5.3. The Affirm Representation

As was the case with the service specification, we simply turn state variables into selector functions
of a data type; state transition functions (commands) become constructors. The definitions of the
state transition functions become axioms. All the functions in the Affirm representation carry along
an explicit parameter of the type being defined; it is a characterization of the current state.

What is displayed here is a stylized version of the axioms, omitting all axioms stating that some

selector is not modified by some constructor. Appendix Il contains the actual Affirm input.
state machine ABProtocol;

declare s: ABProtocol;
declare m: Message;

constructors
InitializeProtocol, ProtocolSend(s,m), ReceivePacket(s), Deliver(s), ReceiveAck(s), Retransmit(s), LoseAck(s), LosePacket(s);
selectors InitialSequenceNumber, RSN(s), SSN(s): Bit;
selectors ReceiverToSender(s), SenderToReceiver(s): Medium,;
selectors Received(s), Sent(s): QueueOfMessage;
selectors Pending(s), ReceiverBuffer(s): QueueOfPacket;

axioms {/nitializePratocol:}
Pending(InitializeProtocol) = = NewQueueOfPacket,
Received(initializeProtocol) = = NewQueueOfMessage,
ReceiverButfer(InitializeProtocol) = = NewQueueOtPacket,
ReceiverToSender(InitializeProtocol) = = InitializeMedium,
RSN(InitializeProtocol) = = InitialSequenceNumber,
SenderToReceiver(InitializeProtocol) = = InitializeMedium,
Sent(initializeProtocol) = = NewQueueOtMessage,
SSN(initializeProtocol) = = InitiaiSequenceNumber;

axioms {ProtocolSend:}
Pending(ProtocoiSend(s, m)) = = if Pending(s) = NewQueueOfPacket
then NewQueueOtPacket Add MakePacket(m, SSN(s))
eise Pending(s).
SenderToReceiver(ProtocolSend(s, m)) = = if Pending(s) = NewQueueOtPacket
then Transmit(SenderToReceiver(s), MakePacket{m, SSN(s)))
else SenderToReceiver(s),
Sent(ProtocoiSend(s, m)) = = if Pending(s) = NewQueueOiPacket
then Sent(s) Add m
else Sent(s);

axioms {ReceivePacket:}
ReceiverButfer(ReceivePacket(s)) = = if Seq(Front(SenderToReceiver(s))) = RSN(s)
and SenderToReceiver(s) ~ = InitializeMedium
then NewQueueOfPacket Add Front(SenderToReceiver(s))
else ReceiverBuffer(s),
ReceiverToSender(ReceivePacket(s)) = = if SenderToReceiver(s) ~ = initializeMedium
and ReceiverBuffer(s) = NewQueueOfPacket
and RSN(s) ~ = Seq(Front{SenderToReceiver(s)))
then Transmit(ReceiverToSender(s), Front(SenderToReceiver(s)))
elas ReceivarToSender(s),
RSN(ReceivePacket(s)) = = if Seq(Front(SenderToReceiver(s))) = RSN(s) and SenderToReceiver(s) ~ = initializeMedium
then ~RSN(s)
else RSN(s),
SenderToReceiver(ReceivePacket(s)) = » Receive(SenderToReceiver(s));

o

- e

28 DETAILED EXAMPLE: THE ALTERNATING BIT PROTOCOL

axioms {Deliver:}
Received(Deliver(s)) = = if ReceiverBuffer(s) = NewQueueOfPacket
then Received(s)
else Received(s) Add Text(Front(ReceiverBuffer(s))),
ReceiverBuffer(Deliver(s)) = = NewQueueOfPacket,
ReceiverToSender(Deliver(s)) = = it ReceiverBuffer(s) = NewQueueOQfPacket
then ReceiverToSender(s)
else Transmit(ReceiverToSender(s), Front(ReceiverButfer(s)));
axioms {ReceiveAck:}
Pending(ReceiveAck(s)) = = if Seq(Front(ReceiverToSender(s))) = SSN(s) and ReceiverToSender(s) ~ = initializeMedium
then NewQueueOfPacket
else Pending(s),
ReceiverToSender(ReceiveAck(s)) = = Receive(ReceiverToSender(s)),
SSN(ReceiveAck(s)) = = if Seq(Front(ReceiverToSender(s))) = SSN(s) and ReceiverToSender(s) ~ = InitializeMedium
then ~SSN(s) {
eise SSN(s);)
axiom {Retransmit:}
SenderToReceiver(Retransmit(s)) = = if Pending(s) = NewQueueOfPacket
then SenderToReceiver(s)
eise Transmit(SenderToReceiver(s), Front(Pending(s)));

axiom {LoseAck:}
ReceiverToSender{(LoseAck(s)) = = Receive(ReceiverToSender(s));

axiom {LosePacket)}
SenderToReceiver(LossPacket(s)) = = Receive{SenderToReceiver(s));

] end {ABProtocol) ;

Y el Apaan® ———

5.4. Verifying the Protocol against the Service Specification

This section presents a detailed example of how to verify that a lower level state transition machine
specification implements a higher level one. In this case the system in question is the Alternating Bit
protocol, and the two levels are the service (higher) and protocol (lower) specifications.

5.4.1. Safety
The service specification (see Section 3.5) includes UserSend and UserReceive operations, and an
InitializeService operation to initialize the system, all meant to be invoked by the users of the service.
{ It also includes spontaneous transitions SendComplete and ReceiveCompiete, modeling the
completion of the UserSend and UserReceive operations within the distributed system providing the
service. Hence there are four control states at the service level, as shown in Figure 1-1, with the two
intermediate states explicitly displaying the delay between one user initiating an operation and the
other user becoming aware of it. The state variables used at this level include a butter Butfer for
messages sent but not yet received (at most one is allowed), and queues Sent and Received that
maintain histories of all messages sent and received (these are only used for specification purposes).
There is also a control state variable State with four possible values.

SAFETY 29

The protocol level (see Section 5.3) has operations corresponding to each of the user operations at
the service level:

InitializeService ~» InitializeProtoco!
UserSend — ProtocolSend
UserReceive —» Deliver

There is also a second set of protocol operations that collectively accomplish the spontaneous
operations of the service level. These are ReceivePacket, ReceiveAck, LosePacket, LoseAck, and
Retransmit. The service-level state variables Sent and Received are implemented transparently, while
Buffer is implemented as the text of the first packet in the queue of packets called Pending. The
service-level control states (ReadyToSend, Sending, ReadyToReceive, and Acking) correspond to
four defined state classes at the protocol level (S7, S2, S3, and S4). Figure 5-2 summarizes these
correspondences informally.

Service Protocol
InitializeService InitializeProtocol
Sent Sent
Received Received
Buftfer Text(Front(Pending))
State
ReadyToSend S1
Sending S2
ReadyToReceive S3
Acking S4
UserSend ProtocoiSend
UserReceive Deliver

SendComplete any sequence of the operations
ReceiveComplete } {ReceivePacket, ReceiveAck, Retransmit, LosePacket, LoseAck}

Figure 5-2: The correspondence between service and protocol-level state variables

Our method of proving that a protocol implements its service specification is to convert each of the
service-level axioms into a theorem at the protocol level, and then to prove these theorems using the
protocol specification. This follows the method of [17). Appendix Ill.1 shows the formal

30 DETAILED EXAMPLE: THE ALTERNATING BIT PROTOCOL

correspondence between functions at the two levels using a representation function rep, and
Appendix IIl.2 defines the protocol-level state classes. The basic method is to replace each
occurrence of the service machine state in the axioms of the service specification by the rep of its
corresponding protocol states, and then to use the other rewrite rules displayed in Appendix 11l.1 until
the expression is reduced to terms involving only protocol-level selectors and constructors.

This conversion is most conveniently discussed in three portions. The easiest axioms to convert
are those defining the results of the user operations (UserSend, UserReceive, and InitializeService)
on the state variables. Since each service-level operation is directly implemented by a single
protocol-level operation, and the state variables also have a simple correspondence, the resulting
theorems are easily obtained. Appendix 1Il.3 shows how two service axioms are converted in detail,
and Appendix 11.4 gives all of the resulting theorems in this category.

The next group of theorems are those concerning the effects of the spontaneous service
operations on the state variables. Here there is no fixed correspondence of one protocol operation
for each service operation. Instead, we wish to show that any sequence of the five spontaneous
protocol operations (ReceivePacket, ReceiveAck, LosePacket, LoseAck, and Retransmit) will have the
specified effect. For state variables Sent and Received this is simple because the spontaneous
operations are specified to have pg effect on these variables. The first two theorems of Appendix 11.5
state that each individual operation will have no effect, so we can aiso conclude that any sequence of
these operations will have no effect. This may be viewed as a special case of structural induction,
considering only the spontaneous operators, and attempting to show that Sent (or Received) is
invariant.

The case for Buffer is more complex since there i3 a possible effect from the spontaneous
operations. We must show that if the system is not in state S4 (corresponding to Acking in the service
specification), then there will be no effect, and if it is in state S4, then Buffer will become empty (i.e.,
NewQueueOfMessage). The first case is similar to the situation for Sent and Received, with the
additional constraint that the system can never enter state S4 from another state by spontaneous
operations. The third theorem of Appendix lIl.5 shows that no single action can modify Buffer in this
case, and therefore no sequence can, as above. For the S4 case, the final theorem of Appendix 11l.5
states that the spontaneous operations either leave the system in state S4 with Buffer unchanged, or
set Butfer to NewQueueOfMessage and enter state S7. Once in state S7, we know from the previous
theorem that there will be no further change to Buffer. We can then conclude that if the protocol
progresses (to state S7), it behaves as specified in the service. This proves the gafaty of the protocol.
A separate argument is necessary to prove liveness.

Ll

TR

SAFETY 31

The final set of theorems, in Appendix I11.6, covers the effects of the operations on the service-level
state. For the user operations, we must show that the correct next state is generated by the
corresponding protoco! operation for each of the four states the system may be in. This is stated in
the first and fourth group of theorems (the initial state was already covered). For the spontaneous
operations, the situation is similar to Buffer above. We must show that any sequence of
ReceivePacket, ReceiveAck, LosePacket, LoseAck, and Retransmit can cause only the transitions
specified for SendComplete or ReceiveComplete (i.e., if the system progresses to a new state at all, it
is the correct one). For the most part these theorems say that no state change takes place--only
theorems S1Succ1, S2Succ2, and S4Succ3 show actual progress (page 51). Once again, only safety
is covered here.

All the theorems in Appendix Ill have been proved, showing that the protocol correctly implements
the service. (The proofs of all theorems claimed to have been proved in this report are documented in
[51].) The proofs require a number of definition invocations and substitutions that are tedious. They
also require several lemmas concerning the relationship between SSN and the sequence numbers of
the packets in the mediums. We cite just two as examples:
theorem PktsOIdRP, ail s, med (PktsOid(s, med) imp PktsOld(ReceivePacket(s), med));

theorem PktsOIdPS,
alls, m,med(Pending(s) ~ = NewQueueOfPacket
and PktsOid(s, med)
imp PktsOid(ProtocolSend(s, m), med));

Theorem PktsOIldRP says that if the packets in the medium med are gld (i.e., with sequence number
not equal to SSN(s)), then they are still old after a ReceivePacket event--the event's effects on the
medium are limited to simply remgving a packet. All the remaining packets are unaffected.

5.4.2. Liveness

In order to deal with liveness concerns, we must show that the implementation for each service-
level operation terminates. This is trivial for the user operations, since each is directly implemented
by a single protocol operation agsumed to terminate. The difficuity comes with the so-called
spontaneous operations. We must show that a finite sequence of internal protocol operations serves
to accomplish the desired effect. Considering the SendComplete operation as an example, an
argument of the following sort is necessary.

1. In (protocol) state S2 (corresponding to service state Sending), the Retransmit operation is
enabled and may place an arbitrary number of packets in the SenderToReceiver medium.

2.In state S2, if one of these packets reaches the receiver, the ReceivePacket operation will
achieve the desired effects of SendComplete (i.e., change the state to S3, corresponding to
ReadyToReceive).

PRASIFIE SRS Y

AR

32 DETAILED EXAMPLE: THE ALTERNATING BIT PROTOCOL

31fa lgrge enough (but finite) number of packets are transmitted by the sender, one will reach the
receiver.

These three points taken together imply that a finite number of protocol internal operations will
accomplish the SendComplete service operation. A similar argument holds for the ReceiveComplete
operation. Points 1 and 2 follow directly from the axioms for Retransmit and ReceivePacket. Point 3,
however, requires an additional constraint on the simple medium: the number of packets that may be
lost is bounded. As yet, there igs no convenient method for expressing such eventual delivery
constraints in Affirm. Our liveness arguments must therefore remain informal. Berthomieu [2] and
Hailpern [19, 20] deal with these concerns.

5.5. Protocol Properties and Invariants

As stated in Section 1.3.2, the essential verification of a protocol involves showing that it meets its
service specification. However, it is also possible to prove properties of the protocol specitication
itself, independently of any service specification. In particular, a state invariant similar to the service
requirements discussed in Section 3.6 is worth some discussion. Proving the invariant gives added
confidence that the protocol specification is correct. The system invariant for the Alternating Bit

protocol states that the protocol-level system is always in one of its four valid state classes:
theorem MainSysteminvariant, all 8 (InS1(s) or INS2(s) or INSRL..; or INS4{s));

Wae also note that by the definition of protocol state S7 (in Section 1i1.2),
InS1(s) D (Sent(s) = Received(s))
This is a protocol-level version of the service requirement.

The system invariant has been proved. The proof makes use of the theorems of Appendix I11.6.
Those theorems essentially detail how the state changes for each possible event. Most say that no
change occurs. As with most abstract data types, much of the difficulty with this proof lies in
developing a suitable invariant. We experimented with several versions of the protocol axioms and
state class definitions before developing the present form.

5.6. implementation

Having specified the Alternating Bit Protocol and proven that it has some desired properties, we
must provide an implementation that meets these specifications. (See Section 4.3 for a general
discussion.) Our implementation (in Appendix IV) has two stations:

- Sender containsg procedures ProtocolSend, SenderTimeout, and InitSender; and

- Recelver containg ReceivePacket, Deliver, and InitReceiver.

A SRS b e 1 e M e ene e

IMPLEMENTATION 33

They share the Medium variables SenderToReceiver and ReceiverToSender. Since both stations
have local variables, we need two initialization routines. All other procedures correspond to the
similarly-named events in the protocol specification, except for SenderTimeout. It combines the
Retransmit and ReceiveAck events. Like the events of the specification, all procedures have no effect
on the system if they are called at an inappropriate time.

Program variables correspond to state variables of the specification. Each procedure has an

assertion of the form
VariablesMatch(s, ..vars..) imp VariablesMatch(event(s), ..new vars..)

In other words, for any state s that corresponds to the initigl values of the program variables, the state
resuiting from the listed event will correspond to the variables after the routine finishes. (See Section
(V.4.) For example, the assertion DPost (page 55) says "given any state s whose selectors Sent,
ReceiverBuffer, and ReceiverToSender match the corresponding receiver variables, the new state
resulting from a Deliver(s) event will have selectors that correspond to the values of the variables after
Deliver is executed." PSPost (the assertion for ProtocolSend) adds one more stipulation:
ProtocolSend sets a bit to inform its caller whether it had any effect.

The partial correctness of all these procedures has been proven using Affirm. The proofs were
quite straightforward, using only one lemma about the data type definitions and one lemma about the
protocol specification. Theorem Pendinginvariant states that Pending contains no more than one

packet. It was easily proven from the axioms without reference to any other protocol invariants.
theorem SeqMatch(med, bit) imp (~Seqmatch{med, ~bit)) and med ~ = NewQueueOfPacket;

theorem Pendinginvariant, Remove(Pending(s)) = NewQueueOfPacket;

Since the implementation is in keeping with the specification, its safety follows from the earlier
proof (in Section 5.4). Liveness has not been formally proven for either level. Any liveness proof must
consider that the implementation does not exercise the full range of event sequences possible under
the specification. (For example, Retransmit is always preceded by ReceiveAck.) informally, it may be
seen that only ineffective sequences have been excluded, so progress will not be impeded.

FA oo -

34

6. FURTHER APPLICATIONS

This chapter briefty mentions some further work we have accomplished in applying our
methodology to several more complex protocols.

6.1. Stenning’s Data Transfer Protocol

The protncol described in [44] ignores the aspects involved in connection establishment, and
instead emphasizes the data transfer aspects. It is designed to operate correctly even though the
channel may lose, duplicate, or re-order packets in transit. It is a generalization of the Alternating Bit
protocol as discussed in Section 5.1, since it allows several messages to be in transit at once.

Stenning defined two processes: a transmitter and a receiver. The transmitter sends messages
from a given sequence of messages to the receiver, using a communication line. The receiver in turn
accepts messages from the line, stores them in an output sequence, and acknowledges their receipt
by sending a message to the transmitter via another communication line. The communication lines
are unreliable; messages traveling in either direction can be lost. reordered, corrupted, or duplicated.

Given such an environment, the protocol is supposed to ensure correct delivery of the messages.

The protocol uses a conventional positive-acknowledgment, retransmission-on-time-out technique,
and the receiver and transmitter both maintain windows of messages. The transmitter's window
contains messages sent but not yet acknowledged. Similarly, the receiver can buffer-ahead
messages received out of order (up to some limit), awaiting receipt of the next expected message.

The Affirm specification of the Data Transfer Protocol, as well as a proposed safety invariant and
documentation of its partial proof, are included in [49].

6.2. Transport Service

The transport service represents a protocol layer allowing many users to exchange data. Users are
identified by port addresses. In order to exchange messages, users must first establish a connection
between themseives by appropriate requests to the system; once this is done, users may exchange
data in both directions independently.

The exchange itself functions as in the data transfer protocol above, but is controlied by the

receiving end (in each direction), through the use of explicit credits, i.e., permission to send one or
more messages. Once users are done communicating, they ask the system to disconnect the
established connection.

TYRANSPORT SERVICE 35

We have specified a transport service (but not the protocol implementing the service), and proved
several properties about the specification. The specification is done in two levels. The lower level
describes gne half-duplex connection that knows about the connection status at both ends. The
upper level uses two such half-duplex connections, one for each direction, with a shared connection
status, thus modeling a full-duplex connection between each pair of users. This division permits the
separation of addressing properties from data transfer properties.

Properties proved about this specification show that normal sequences of connection setup and
data transfer commands will have their anticipated effects. An interesting detail discovered during
these proofs was that the specification precluded a user from establishing a connection with itself.

Complete details of the specification and proven properties may be found in [41].

6.3. Selective Repeat Transport Protocol

A transport protocol similar to Stenning's is specified in [3]. It involves the transfer of messages
between a sender and a receiver over an unreliable medium (it may lose messages, but not reorder
them). The sender has a window of messages that have been sent but not yet acknowledged. If the
acknowledgment does not arrive within a certain (fixed but arbitrary) time, the message is considered
to have been lost and is retransmitted. This protocol is proven to be partially correct with respect to
the property of "correctly transferring data across the medium."

Progress properties and their characterization in Aftirm are examined in [2]. in particular, an
extension of Floyd's "well-founded set" method [8] is used to show the termination of a data transfer
protocol.

6.4. Connection Establishment Protocol

A protocol to provide the kind of connection-establishment service described in Section 6.2 has
been specified in [43). The protocol modeled in that paper is the three-way handshake used in the
ARPANET TCP algorithm. Although the protocol has not been verified against a complete service
specification, several interesting properties have been proved. Work is continuing.

o
N -

Jepoa ‘; -

36

7. PROBLEMS AND EXTENSIONS

While we feel that we have had considerable success in handling protocols with Affirm, several
areas need further work. In this section we briefly discuss problems encountered and possible
extensions.

7.1. Composition of Specifications

Given that a protocol layer is composed of several interacting stations, it is reasonable to specify
the behavior of each station gseparately, i.e., by presenting its local view of the rest of the system [42).
In a second step, these several local views could be combined to specify the overall behavior of the
layer.

At present, the techniques described in the previous sections do not allow the straightforward
composition of such specifications; all specifications thus far have described systems from a global
reference point.

7.2. Concurrency

A protocol layer supports several users, and may receive simultaneous requests for service from
them (e.g., one side is sending a long message while the other acknowledges a previous message). A
fully adequate specification method should allow for concurrent operations for both service
specifications and protocol specifications. Furthermore, since the stations composing the layer
operate independently, the verification method must be able to analyze systems with concurrently
executing components.

A basic assumption of most state transition models is that the transitions are atomic, serial
operations. This assumption is carried over to the Affirm specifications where the axioms define the
effects of each atomic operation (constructor function). However, this limitation is not as serious as it
might at first appear, because by defiring operations with a small enough grain the assumption of
atomicity is reasonable. For systems with several independent components, the effect of
concurrency can be approximated by considering all possible interieavings of the operations of each

component.

@t g o b i ol

W s e Ak Al

e) A

——

EXCEPTIONS 37

7.3. Exceptions

The main purpose of a protocol specification is to define allowed or normal sequences of
operations and their effects. Unfortunately, it is a tact of lite in the protocol world that users
occasionally issue invalid commands, and even protocol stations send inappropriate messages to
each other. Thus it is inadequate to state merely that the protocol behavior is undefined for invalid
inputs, or that some unspecified party is responsible for guaranteeing that inputs are valid. A richer

vocabulary for specifying the handling of such exceptional conditions should be supported,
including:

1. ignore invalid inputs (i.e., they have no effect),

2. reject them (i.e., they have no effect, but an error indication is returned to the requesting party),
and

3. enter an error-recovery portion of the protocol.

Axiomatic specification methods have difficulties with (2) and (3), and the example protocol
specifications prepared in Affirm to date have been limited to ignoring invalid inputs, or simply not
defining the results. Several methods to extend axiomatic techniques to handle exceptions have
been proposed, but we have not yet determined the best way to proceed in Affirm.

7.4. Specification and Verification of Systems with More than Two
interacting Entities
So far, we have considered only protocols that involve essentially two interacting entities over a
transmission medium. This covers a large number of protocols in current use. Nevertheless, there
are protocols involving more than two interacting entities (e.g., routing in packet-switching networks).
it appears that the techniques discussed in this report can be applied to the specification of these
protocols as well, but we have not done it.

As one would expect, there is a combinatorial explosion on the number of possible states of the
system. It is at this point that the ability to decompose the overall system description into the
description of its components becomes crucial, since it allows the analysis of the behavior of the
system through the analysis of the behavior of its components. We are investigating extensions of our
techniques to handle such situations.

PROBLEMS AND EXTENSIONS

7.5. Higher Level Protocols

The main application of formal specification methods to protocols has been at the data transfer
level, where the first concerns are overcoming message loss, damage, and reordering. Much less
work has been done on formally specifying higher level protocols that focus more on transiation into
and out of canonical forms (e.g., a virtual terminal or file). Furthermore, the operations to be specified

are more specialized to the area of concern of the protocol (e.g., graphics, terminal handling, speech
compression) than to general data transfer. It remains to be seen whether the same methods are

applicable at these higher levels, or whether a new set of abstractions {(e.g., involving canonical
forms) will be more suitable.

8. CONCLUSION %
‘ We have chosen to combine the state transition model and abstract data type approaches for :
s several reasons. First, we have a strong methodology and a rapidly evolving, powerful supporting
f tool: Affirm. A natural question is whether such a methodology can accommodate a diverse set of

! formalisms and modeling methods.

This question first arose in conjunction with a toy Security Kernel [29], where we were presented
with a state transition specification of an operating system kernel with operations such as
SwapProcesses and RaiseBlockLevel. It was quite natural to represent the specification as a data
type and then do an induction proof of an important invariant about relative block and process levels.

We then applied the same method to protocols and have, on the whole, been quite satisfied. its
limitations are touched upon in Chapter 7, but within these limits we have conducted a broad
exploration of several protocol issues.

All methods have limitations. Some of the limitations of other methods are handied nicely in our

finite-state modeling approaches. However, we lack the decision ability of algorithms based on finite-
state exploration and its ability to simply reveal errors.

approach. For example, we have no problem with unbounded objects, which cause difficulties for &

Another advantage of our approach is the capability to execute specifications: axioms have a
natural rewriting rule representation that we exploit. That is, we can take a set of axioms, plug in
special values, and see where the rewriting leads. The determinism and executability of axioms is an
aid in evaluating the accuracy of specifications, independent of their ability to support proofs. This
advantage has been exploited in [43].

Our method also leads naturally from specification to verification, using the standard data type
induction methods. No further mechanisms were needed to adjust Affirm to state transition
specifications, aithough a "front-end” to handle our stylized type specifications would be useful.

In conclusion, a basis has been laid for further steps toward practical specification and verification

of not just protocols, but also of any system expressible as a state transition machine. Experience
indicates that real protocols can be handled [42]. The major remaining task is to consolidate
techniques for proving progress and liveness.

APPENDIX |
DATA TRANSFER SERVICE SPECIFICATION

The service specification uses three auxiliary data types: Contro/State, a simple enumerated type
with four constants (specified in this appendix), Message, a type about which we make po
assumptions (except the standard one: there is an equality operation on the type), and

QueueOfMessage, an instantiation of the generic QueueOfElemType type from the Affirm type library
[50;Vol.lt).

The following text is in exactly the form in which it would be submitted to the system, except for the
use of multiple fonts. In particular, the "no change" axioms deleted from the axiom sets of the
stylized state machine description on page 15 are included here.
type SimpleMessageSystem;

needs types Message, QueueOfMessage, ControiState;
declare s: SimpleMessageSystem;
declare m: Message;

interface State(s): ControiState;
interfaces
Sent(a), Received(s), Buffer(s): QueueOfMessage;
interfaces
InitializeService, UserSend(s, m), SendComplete(s), UserReceive(s), ReceiveComplete(s): SimpleMessageSystem;
interface Induction(s): Boolean;

axioms
State(UserSend(s, m)) = = il State(s) = ReadyToSend
then Sending
elae State(s),
State(SendComplete(s)) = = i State(s) = Sending
then ReadyToReceive
eise State(s),
State(UserReceive(s)) = = if State(s) = ReadyToReceive
then Acking
eise State(s),
State(ReceiveCompiete(s)) = = if State(s) = Acking
then ReadyToSend
else State(s),
State(initializeService) = = ReadyToSend;
axioms
Sent(UserSend(s, m)) = = if State(s) = ReadyToSend

then Sent(s) Add m
else Sent(s),
Sent(SendComplete(s)) = = Sent(s),
Sent(UserReceive(s)) = = Seni(s),
Sent(RecsiveComplete(s)) = = Sent(s),
Sent(initializeService) = s NewQueueOfMessage;

DATA TRANSFER SERVICE SPECIFICATION)

axioms
Received(UserSend(s,. m)) = = Received(s),
Receivad(SendComplete(s)) = = Received(s),
Received(UserReceive(s)) = = if State(s) = ReadyToReceive
then Received(s) Add Front(Bufter(s))
else Received(s),
i Received(ReceiveComplete(s)) = = Received(s),
Received(InitializeService) = = NewQueueOfMessage;

At

axioms
Buffer(UserSend(s, m)) = = it State(s) = ReadyToSend
then Buffer(s) Add m
else Butfer(s),
Buffer(SendComplete(s)) = = Buffer(s),
Buffer(UserReceive(s)) = = Buffer(s),
Butfer(ReceiveComplete(s)) = = if State(s) = Acking
then Remove(Buffer(s))
else Buffer(s),
Buffer(initializeService) = = NewQueueOfMessage;

schema Induction(s)
= = cases(Prop(initializeService),
all 3, m (IH(s) imp Prop(UserSend(s, m))),
all s (IH(s) imp Prop(SendComplete(s))),
all 8 (IH(s) imp Prop(UserReceive(s))),
all s (IH(s) imp Prop{ReceiveComplete(s))));
ond {SimpleMessageSystem) ;

type ControlState, {An enumerated type, with four distinct constants.}
declare cs: ControiState;
interfaces

ReadyToSend, Sending, ReadyToReceive, Acking: ControiState;
sxioms {These axioms state that all the constants of this type are gistinct.}

cs = ¢cs = = TRUE,

ReadyToSend = Sending = = FALSE,

ReadyToSend = ReadyToReceive = = FALSE,

MYTM = Acking == FALSE.

Sending = ReadyToSend = = FALSE,

Sending = ReadyToReceive = = FALSE,

Sending = Acking = = FALSE,

ReadyToReceive = ReadyToSend = = FALSE,

ReadyToReceive = Sending = = FALSE,

ReadyToReceive = Acking = = FALSE,

Acking = ReadyToSend = = FALSE,

Acking = Sending = = FALSE,

Acking = ReadyToReceive = = FALSE;
end {ControlSiate} ;

type M essage;, {A type about which we make the absolutely minimal assumptions: there is an equallity relation.}
declare m: Message;

axiommam = = TRUE;

ond {Message} .

e it St e Snbii 5 e A, e MBSO AN St Vit

oL i A i Ty b s e AT R SMPTIIRS L ety < me s

i
APPENDIX II ,I |
f THE PROTOCOL REPRESENTATION i
These axioms are in exactly the form in which they would be submitted to Affirm; see Appendix | ; A
‘ for an explanation of how their form differs from the earlier, stylized, presentation. The auxiliary types ’ .
g Message, Packet, Medium, Bit, and QueueOfMessage are also listed here.

type ABProtocol.

needs types Message, Packet, QueueOfMessage, QueueOfPacket, Medium, Bit;

' ! declare s, s8: ABProtocol;
. declare m, mm: Measage;
' declare med: Medium;
declare packetq: QueueOiPacket;
declare pit: Packet;

interfaces
Sent(s), Received(s), Text(packetq): QueveOfMessage;

interfaces
SenderToReceiver(s), ReceiverToSender(s): Medium;

interfaces
ReceiverBufter(s), Pending(s): QueueOfPacket;

interfaces
InitialSequenceNumber, SSN(s), RSN(s): Bit;

interfaces
InitializeProtocol, Deliver(s), ProtocoiSend(s, m), ReceivePacket(s),
ReceiveAck(s), Retranamit(s), LosePacket(s), LossAck(s): ABProtocol;

s it AL g A b St - + e gV

interfaces
NormaiForm(s), Induction(s): Boolean;

sxioms = 8 = = TRUE;

axioms
Sent(ProtocoiSend(s, m)) = = if Pending(s) = NewQueueOfPacket
then Sent(s) Add m
eise Sent(s),

Sent(ReceivePacket(s)) = = Sent(s),
Sent(ReceiveAck(s)) = = Sent(s),

Sent(Deliver(s)) = = Sent(s),

Sent(Retranamit(s)) = = Sent(s),
Sent(LosePacket(s)) = = Sent(s),
Sent(LoseAck(s)) = = Sent(s),
Sent(initisfizeProtocol) = = NewQueueOfMessage;

B ke .

THE PROTOCOL REPRESENTATION

axioms
Received(ProtocoiSend(s. m)) = = Received(s),
Received(ReceivePacket(s)) = = Received(s),
Received(ReceiveAck(s)) = = Received(s),
Received(Deliver(s)) = = if ReceiverBuffer(s) = NewQueueOfPacket
then Received(s)
else Received(s) Add Text(Front(ReceiverBuffer(s))),
Received(Retransmit(s)) = = Received(s),
Received(LosePackat(s)) = = Recsived(s),
Received(L.oseAck(s)) = = Received(s),
Received(lnitializeProtocol) = = NewQueueOfMessage;

axioms
Text(NewQueueOiPacket) = = NewQueueOfMessage,
Text(packetq Add pkt) = = Text(packetq) Add Text(pkt);

axioms
SenderToReceiver(ProtocolSend(s, m)) = = if Pending(s) = NewQueueOfPacket
then Transmit(SenderToReceiver(s), MakePacket(m, SSN(s)))
eise SenderToReceiver(s),
SenderToReceiver(ReceivePacket(s)) = = Receive(SenderToReceiver(s)),
SenderToReceiver(ReceiveAck(s)) = = SenderToReceiver(s),
SenderToReceiver(Deliver(s)) = = SenderToReceiver(s),
SenderToReceiver(Retransmit(s)) = = if Pending(s) = NewQueueOfPacket
then SenderToReceiver(s)
else Transmit(SenderToReceiver(s), Front(Pending(s))).
SenderToReceiver(LosePacket(s)) = = Receive(SenderToReceiver(s)).
SenderToReceiver(LoseAck(s)) = = SenderToReceiver(s),
SenderToReceiver(initializeProtocol) = = InitializeMedium;

axioms
ReceiverToSender(ProtocoiSend(s, m)) = = ReceiverToSender(s),
ReceiverToSender(ReceivePacket(s)) = = if SenderToReceiver(s) ~ = InitializeMedium
and ReceiverButfer(s) = NewQueueOfPacket
and RSN(s) ~ = Seq(Front(SenderToReceiver(s)))
then Transmit(ReceiverToSender(s), Front(SenderToReceiver(s)))
eise ReceiverToSender(s),
ReceiverToSender(ReceiveAck(s)) = = Receive(ReceiverToSender(s)).
ReceiverToSender(Deliver(s)) = = if ReceiverBuffer(s) = NewQueueOfPacket
then ReceiverToSender(s)
else Transmit(ReceiverToSender(s), Front(ReceiverBuffer(s))).
ReceiverToSender(Retransmit(s)) = = ReceiverToSender(s),
ReceiverToSender(LosePacket(s)) = = ReceiverToSender(s).
ReceiverToSender(LoseAck(s)) = = Receive(ReceiverToSender(s)),
ReceiverToSender(InitializeProtocol) = = InitializeMedium;

axioms
ReceiverBuffer(ProtocoiSend(s, m)) = = ReceiverBuffer(s),
ReceiverBuffer(ReceivePacket(s)) = = if Seq(Front(SenderToReceiver(s))) = RSN(s)
and SenderToReceiver(s) ~ = InitializeMedium

then NewQueueOfPacket Add Front(SenderToReceiver(s))
eise ReceiverButfer(s),

ReceiverButfer(ReceiveAck(s)) = = ReceiverButfer(s),

ReceiverBuffer(Deliver(s)) = = NewQueueOfPacket,

ReceiverBuffer(Retransmit(s)) = = ReceiverButfer(s),

ReceiverButfer(LosePacket(s)) = = ReceiverBuffer(s),

ReceiverBuffer(LoseAck(s)) = = ReceiverButfer(s),

ReceiverBuffer(InitializeProtocol) = = NewQueueOfPacket,

44 THE PROTOCOL REPRESENTATION

axioms
Pending(ProtocoiSend(s, m)) = = if Pending(s) = NewQueueOfPacket
then NewQueueOfPacket Add MakePacket(m, SSN(s))
eise Pending(s).
‘ Pending(ReceivePacket(s)) = = Pending(a).
M Pending(ReceiveAck(s)) = = it Seq(Front(ReceiverToSender(s))) = SSN(s) and ReceiverToSender(s) ~ = InitializeMedium
- then NewQueueOfPacket
else Pending(s).
Pending(Deliver(s)) = = Pending(s),
Pending{Retranamit(s)) = = Pending(s),
Pending(LosePacket(s)) = = Pending(s),
: Pending(LoseAck(s)) = = Pending(s),
* Pending(initializeProtocol) = = NewQueueOfPacket;

i axioms

SSN(ProtocolSend(s, m)) = = SSN(s),

(SSN(ReceivePacket(s)) = = SSN(s),
SSN(ReceiveAck(s)) = = if Seq(Front(ReceiverToSender(s))) = SSN(s) and ReceiverToSender(s) ~ = initializeMedium

then ~SSN(s)

‘ else SSN(s),

! SSN(Deliver(s)) = = SSN(s),

‘ SSN(Retransmit(s)) = = SSN(s),
SSN(LosePacket(s)) = = SSN(s),
SSN(LoseAck(s)) = = SSN(s).
SSN(initializeProtocol) = = InmalSequenceNumber

axioms
RSN(ProtocolSend(s, m)) = = RSN(s),
! RSN(ReceivePacket(s)) = = if Seq(Front{SenderToReceiver(s))) = RSN(s) and SenderToReceiver(s) ~ = InitializeMedium
: then ~RSN(s)
else RSN(s),
3 RSN(ReceiveAck(s)) = = RSN(s),
RSN(Deliver(s)) = = RSN(s),

1 RSN(Retransmit(s)) = = RSN(s),
. RSN(LosePacket(s)) = = RSN(s),
] RSN(LoseAck(s)) = = RSN(s),

RSN(InitializeProtocol) = = InitialSequenceNumber;

schema
NormaiForm(s) = = cases(Prop(InitializeProtocol),
all ss, mm (Prop(ProtocolSend(ss, mm))),
? all ss (Prop(ReceivePacket(ss))),
4 all ss (Prop{ReceiveAck(ss))),
’ all ss (Prop(Deliver(ss))),
all ss (Prop(Retransmit(ss))),
q alt as (Prop(LosePacket(ss))),
: all ss (Prop(LoaeAck(ss)))),
Induction(s) = = cases(Prop(initializeProtocolf),
all s8, mm (IH(ss) imp Prop(ProtocolSend(ss, mmy))).
all ss (IH(ss) imp Prop(ReceivePacket(ss))),
all ss (IH(ss) imp Prop(ReceiveAck(ss))),
all ss (IH(ss) imp Prop(Deliver(ss))),
all ss (IH(ss) imp Prop(Retransmit(ss))),
all 88 (IH(ss) imp Prop{LosePacket(ss))),
all ss (IH(ss) imp Prop(LoseAck(ss))));

ond {ABProtocol} ;

THE PROTOCOL REPRESENTATION

type Medium;
needs type Packet;

declare m, mi, m2: Medium,;
deciare pkt, pkt1, pkt2: Packet;

interfaces
InitializeMedium, Transmit(m, pkt), Receive(m), Lose(m): Medium;

interface Front(m): Packet;

interfaces
Empty{m)}, pkt in m, Induction{m): Boolean;

infix in;

axioms
mam = = TRUE,
Transmit(m, pkt) = InitializeMedium = = FALSE,
InitializeMedium = Transmit(m, pkt) = = FALSE,
Transmit{(m1, pkt1) = Transmit(m2, pkt2) = = ((m1=m2) and (pkt1 = pkt2));

axioms
Receive(initializeMedium) = = InitializeMedium,
Receive(Transmit(m, pkt)) = = # m = InitializeMedium
then InitializeMedium
eise Transmit(Receive(m), pkt);

axiom Lose(m) = = Receive(m);

axiom Front(Transmit(m, pkt)) = = if m = InitializeMedium
then pkt
else Front(m);

axiom Empty(m) = = (m = InitializeMedium);

axioms
pkt in InitializeMedium = = FALSE,
pkt in Transmit(m, pkt1) = = ((pkt = pktt) or pkt in m);

schema Induction{m)
= = cases(Prop(initializeMedium),
all m, pkt (IH(m) imp Prop(Transmit(m, pkt))));

end {Medium} ;

46 THE PROTOCOL REPRESENTATION

type Bit;
declare b, b1, b2: Bit;

interfaces
on, off, ~b1: Bit;

intertace NormaiForm(b): Boolean;
axiom ~~b = = b;
axioms
b=b = = TRUE,
on=off = = FALSE.
Oﬂ =0N == FALSE. .
bl = ~b2 = = b1 ~= b2, 4
~bt = b2 = = bt ~= b2; i
schema NormalForm{b) = = cases(Prop{on), Prop(off));

end {Bir} ;

type Message, (A type about which we make the absolutely minimal assumptions: there i an equality relation.}
declare m: Message;
axiomm=z=m = = TRUE;

end {Message} ;

type Packet,

needs types Message, Bit;

declare pkt: Packet;
declare b, b1, b2: Bit; ?
declare m, m1, m2: Message;

interface MakePacket(m, b): Packet;
interface Seq(pkt): Bit;
intertace Text(pkt): Message;
axioms
pkt=pkt = = TRUE,
MakePacket(m1, b1) = MakePacket(m2, b2) = = ((m1x=m2) and (bt = b2)); 1
axiom Seq(MakePacket(m, b)) = = b;

axiom Text(MakePacket(m, b)) = = m;

end {Packet) ;

s = o = s e

THE PROTOCOL REPRESENTATION

type QueueOfMessage,
needs type Message;

declare q, q1, 92, qq: QueveOfMessage;
declare i, i1, i2, ii: Message;

interfaces
N NewQueueOiMessage. q Add i, Remove(q), Append(q1, g2), queli): QueueOfMessage;
3 infix Add;
interfaces
Front(q), Back(q): Message; J
interfaces
- NormaiForm(q), Induction(q). i in q: Boolean;
3 infix in;
axioms
qQ=Q == TRUE.
. q Add i = NewQueueOtMessage = = FALSE,
! NewQueueOfMessage = q Add i = = FALSE,
% _ Q1 Add i1 = g2 Add i2 = = (g1 = G2) and (i1 =i2));
axioms
Remove(NewQueueOfMessage) = = NewQueueOfMessage,
Remove(q Add i) = = if @ = NewQueueOfMessage
theng
else Remove(q) Add i;

axioms
Append(q, NewOueueOfMessage) = = q,
Append(q. Q1 Add i1) = = Append(q, q1) Add i1;

axiom que(i) = = NewQueuveQfMessage Add i;

axiom Front(q Add i) = = if ¢ = NewQueueOfMessage
theni
else Front(q);

axiom Back{g Add i) = = i;

axioms
i in NewQueueQfMessage = = FALSE,
iin{qAddit) = = (iinqor(i=i1)),

rulelemma Append(NewQueueOfMessage, q) = = q;

schema
NormalForm(q) = = cases(Prop(NewQueueOfMessage),
all qq. i (Prop(qa Add ii))),

Induction(q) = = cases(Prop(NewQueueQfMessage),
alt qq. ii (IH{qq) imp Prop(qq Add ii)));

: end {QueueOfMessage) ;

< §
Rt gt - - an

APPENDIX Il
SERVICE AXIOMS - PROTOCOL THEOREMS

This appendix contains the correspondence between the service and protocol specifications of the
Alternating Bit protocol, and lists the theorems generated as part of the job of proving that the
protocol implements the service. These theorems have been proved using Affirm. The proofs are
documented in [51].

I11.1. The Correspondence between the Service and the Protocol

declare s: ABProtocol;
declare m: Message;

interface rep(s): ABProtService;

1. InitializeService = = rep(InitializeProtocol)
2. Sentngce(rep(s)) = = Sen D‘?cp‘(s)
3. Rece'vedservice(’ep (s)) = = Received rotocol(s)

4. Buffer(rep(s)) = = Text(Front(Pending(s)))
5. State(rep(s)) = = it InS1(s)
then ReadyToSend
else if InS2(s)
then Sending
else if InS3(s)
then ReadyToReceive
else Acking
6. UserSend(rep(s), m) = = rep(ProtocolSend(s, m))
7. Receivelrep(s)) = = rep(Deliver(s))
8. SendComplete(rep(s))
= = rep({LosePacket LoseAck Retransmit ReceivePacket ReceiveAck}* (s))
9. ReceiveComplete(rep(s))
= = rep({LosePacket LoseAck Retransmit ReceivePacket, ReceiveAck}* (s))

1.2, Correspondence of States Between Service and Protocol

The four states in the service specification, ReadyToSend, Sending, ReadyToReceive, and Acking,
correspond to four states in the protocol specification, labeled S1, $2, 83, and S4. The predicates in
the protocol specification defining these states are defined in Affirm as follows.

InS1(s) {ReadyToSend}
= = (Pending(s) = NewQueueOfPacket
and ReceiverBuffer(s) = NewQueueOtPacket
and Sent(s) = Received(s)
and PktsOld(s, SenderToReceiver(s))
and PktsOld(s, ReceiverToSender(s))
and RSN(s) = SSN(s))

CORRESPONDENCE OF STATES BETWEEN SERVICE AND PROTOCOL 49

InS2(s) {Sending}
= = { Pending(s) ~ = NewQueueOtPacket
and ReceiverBuffer(s) = NewQueueOfPacket
and Sent(s) = Received(s) Add Text(Front(Pending(s)))
and PktsCurrentOrOid(s, SenderToReceiver(s))
and PktsOld(s, ReceiverToSender(s))
and RSN(s) = SSN(s))

InS3(s) {ReadyToReceive}
== { Pending(s) ~= NewQueueOfPacket
and ReceiverBuffer(s) = Pending(s)
and Sent(s) = Received(s) Add Text(Front(Pending(s)))
3 and PktsCurrent(s, SenderToReceiver(s))
‘ and PktsOld(s, ReceiverToSender(s))
and RSN(s) ~ = SSN(s))

InS4(s) {Acking}
= = (Pending(s) ~ = NewQueueOiPacket
and ReceiverBuffer(s) = NewQueueOQfPacket
and Sent(s) = Received(s)
and PktsCurrent(s, SenderToReceiver(s)) 1
and PktsCurrentOrOid(s, ReceiverToSender(s))
and RSN(s) ~ = SSN(s))

111.3. Example: Mapping Two Service Axioms into Protocol Theorems

Service axiom

Received,, . ,(UserSend(S, m)) = = Received,,, ., (S)

use S = rep(s)

Received (UserSend(rep(s), m)) = ReceivedseMce(rep(s))

service
use§
Receivedsewice(rep(ProtocolSend(s, m))) = Received . .(rep(s))
used
Recewedmmo,(ProtocolSend(s, m)) = Recewedpmoco,(s)

Service axiom
Sent (UserSend(S, m)) = = if State(S) = ReadyToSend
then SentseMce(S) Add m]

else Sentsemi c e(S)

service

use S = rep(s)
Sent,, ...(UserSend(rep(s), m)) = = if State(rep(s)) = ReadyToSend
then Sentwvi . e(rep(s)) Add m
else Sentwvi celrep(s)

50 SERVICE AXIOMS — PROTOCOL THEOREMS

use 6
Sent”mce(rep(ProtocolSend(s, m))} = = if State(rep(s)) = ReadyToSend
then Sent servic e(rep(s)) Add m
else Sentsmi c e(rep(s))
use 2
Sentprotoco'(ProtocoISend(s. m)) = = if State(rep(s)) = ReadyToSend
then Sentm oto cm(s) Add m
else Sentpr otoc ol(s)
uses
Sent (ProtocolSend(s, m)) = = if InS1(s)
protocol
then Sent o mmm‘(s) Add m
else Sentnrotoc oS

I11.4. Etfects on State Variables by User Operations

{tor the Send operation:}

theorem SS, Sent(ProtocolSend(s, m)) = if InS1(s)
then Sent(s) Add m
eise Sent(s);

theorem RS, Received(ProtocolSend(s, m)) = Received(s);
theorem BS. Text(Pending(ProtocolSend(s, m))) = if InS1(s)

then Text(Pending(s)) Add m
else Text{Pending(s));

{for the Receive operation:}

theorem SR, Sent(Deliver(s)) = Sent(s);

theorem RR, Received(Detiver(s)) = if InS3(s)
then Received(s) Add Front(Text(Pending(s)))
else Received(s);

theorem BR, Text(Pending(Deliver(s))) = Text(Pending(s));

{for the InitializeProtocol operation:}

theorem S/, Sent(InitializeProtocol) = NewQueueOfMessage;

theorem R/, Received(InitializeProtocol) = NewQueueOfMessage;

theorem B/, Text(Pending(initializeProtocol)) = NewQueueOfMessage;

theorem T/, InS1(InitializeProtocol);

EFFECTS ON STATE VARIABLES BY SPONTANEQUS OPERATIONS 51

I11.5. Effects on State Variables by Spontaneous Operations

" {tor the Sent state variable:}
theorem SentSpont,
Sent(ReceiveAck(s)) = Sent(s)
and Sent(ReceivePacket(s)) = Sent(s)
“_g and Sent(Retransmit(s)) = Sent(s)
and Sent(LosePacket(s)) = Sent(s)
and Sent(LoseAck(s)) = Sent(s);

{for the Received state variabie:}
theorem ReceivedSpont,
Received(ReceiveAck(s)) = Received(s) '
and Received(ReceivePackel(s)) = Received(s) i
and Received(Retransmit(s)) = Received(s)
and Received(LosePacket(s)) = Received(s)
and Received(LoseAck(s)) = Received(s);

{for the Buffer state variable:}
theorem ButferSpont1,
~InS4(s)
imp Pending(ReceiveAck(s)) = Pending(s) and ~InS4(ReceiveAck(s)) -
and Pending(ReceivePacket(s)) = Pending(s) and ~InS4(ReceivePacket(s))
and Pending(Retransmit(s)) = Pending(s) and ~inS4(Retransmit(s))
and Pending(LosePacket(s)) = Pending(s) and ~inS4{LosePacket(s))
and Pending(LoseAck(s)) = Pending(s) and ~InS4(LoseAck(s));

theorem BufferSpont2,
InS4(s) !
imp (Pending(ReceiveAck(s)) = Pending(s) and InS4{ReceiveAck(s))
or InSt(ReceiveAck(s)))
and Pending(ReceivePacket(s)) = Pending(s) and InS4(ReceivePacket(s))
and Pending(Retransmit(s)) = Pending(s) and InS4(Retransmit(s))
and Pending(LosePacket(s)) = Pending(s) and inS4(LosePacket(s))
and Pending(LoseAck(s)) = Pending(s) and InS4(LoseAck(s));

111.6. The next-state Transitions for all Operations ’

{for the ProtocoiSend operation:}
theorem S1Succ1, {Move from state $1 to state S2}
InS1(s) imp InS2(ProtocolSend(s, m));

theorem S2Succ 1, {No change) InS2(s) imp InS2(ProtocolSend(s. m));
theorem S3Succt, {No change} InS3(s) imp InS3(ProtocolSend(s. m));
theorem S4Succ1, {No change} InS4(s) imp inS4(ProtocoiSend(s, m));

{tor the ReceivePacket operation:}
theorem S1Succ2, {No change} InS1(s) imp InS1(ReceivePacket(s));

theorem S2Succ2, {No change, or move from state S2 to state $3}
InS2(s) imp InS2(ReceivePacket(s)) or InS3(ReceivePacket(s));

theorem S3Succ2, {No change} InS3(s) imp InS3(ReceivePacket(s));
theorem SéSucc2, {No change) inS4(s) imp InS4(ReceivePacket(s));

SERVICE AXIOMS —* PROTOCOL THEOREMS

{for the ReceiveAck operation:}

theorem S1Succd, {No change} InS1(s) imp inS1(ReceiveAck(s));
theorem S2Succ3, {No change} InS2(s) imp InS2(ReceiveAck(s));
theorem S3Succ3, {No change} InS3{s) imp InS3(ReceiveAck(s)),

theorem S4Succ3, {No change, or move from state $4 to state S1}
InS4(s) imp InS4(ReceiveAck(s)) or InS1(ReceiveAck(s));

theorem S1Succ4, {No change} InS1(s) imp InSt(Deliver(s));

theorem S2Succ4, {No change} InS2(s) imp InS2(Deliver(s)); v
| theorem S3Succ4, {No change} InS3(s) imp InS4(Deliver(s));]
X theorem S4Succ4, {No change} InS4(s) imp InS4(Deliver(s));

{tor the Deliver opesation:) 'i

{tor the Retransmit operation:}

theorem S1SuccS, {No change} InS1(s) imp InS1(Retransmit(s));
theorem S2Succs, {No change} InS2(s) imp InS2(Retransmit(s));
theorem S3Succ5, {No change} InS3(s) imp InS3(Retransmit(s));
theorem S4SuccS, {No change} InS4(s) imp InS4(Retransmit(s));

{for the LoseAck operation:}

theorem S1Succ6, {No change) InS1(s) imp InS1(LoseAck(e));
theorem S2Succ6, {No change} InS2(s) imp InS2(LoseAck(s));
theorem S3Succ6, {No change} InS3(s) imp InS3(LoseAck(s));
theorem S4Succ6, {No change)} InS4(s) imp InS4(LoseAck(s));

{tor the LosePacket operation:}

theorem S1Succ7, {No change} InS1(s) imp InS1(LosePacket(s));
theorem S2Succ7, {No change} InS2(s) imp InS2(LosePacket(s));
theorem S3Succ7, {No change} InS3(s) imp InS3(LosePacket(s));
theorem S4Succ?, {No change)} InS4(s) imp InS4(L.csePacket(s));

APPENDIX IV
IMPLEMENTING PROCEDURES AND ASSERTIONS

IV.1. Asserted Procedures for the Sender

procedure Sender(yar SenderToReceiver, ReceiverToSender: Medium);
{This 1is an environment for the send operations ProtocolSend and SenderTimeout.
It has no body and no assertions.)

¥YAL Pending: QueueOfPacket: yar Sent:QueueOfMessage: var SSN:Bit;

arocedure ProtocolSend(m:Message; yar success:Boolean)
Imports(var Sent:QueueOfMessage; var SenderToReceiver: Medium; var Pending: QueueOfPacket; SSN: BRt);
post PSPostim, success, Sent, Sent’, SenderToReceiver, SenderToReceiver’, Pending, Pending’, SSN);

{does s ProtocolSend(p,m); sets success bit if we did something. Note
that ReceiverToSender is not imported.)

begin {ProtocolSend}

if Empty(Pending) then

begin;

Pending:= que(MakePacket(m,SSN));

SenderToReceiver:= Transmit(SenderToReceiver, Front(Pending));
success:= TRUE;

Sent:s Add(Sent, m);

e0d
alse success:s FALSE;
and {ProtocolSend};

SenderT imeout
imports(var SenderToReceiver,ReceiverToSender: Medium;
var Pending: QueueOfPacket; var SSN: Bit);
post STPost(SenderToReceiver, SenderToReceiver’, ReceiverToSender,
RecelverToSender’, Pending, Pending’, SSN, SSN’);

{Performs a Retransmit(ReceiveAck(p))}
begin {SenderTimeout)
31 SeqMatch(ReceiverToSender,SSN) (includes test for Empty)
1hen {get a valid Ack)

begin:
Pending:=Remove(Pending):
SSN:= ~SSN;

and;
ReceiverToSender := Receive(ReceiverToSender);
if ~Empty(Pending) then
SenderToReceiver := Transmit(SenderToReceiver, Front(Pending)):
and {SenderTimeout);

proceduyre InitSender
imports(var Pending: QueueOfPacket; var SSN:Bit);

post ISPost(Sent,Pending,SSN);

Sent: = NewQueueOfMessage;

Pending:= NewQueueOfPacket;

SSN:= InitialSequenceNumber;
end (InitSender);

bhegin {Sender has no body}: end:

o T T VW RS VRTINS TRERRTORY PP g s =

54 IMPLEMENTING PROCEDURES AND ASSERTIONS

IV.2. Asserted Procedures for the Receiver

procedyce Receiver(var SenderToReceiver, ReceiverToSender: Medium);

¥YAC Out: QueueOfMessage:
yar RSN:Bit;
¥YAr ReceiverBuffer: QueuveldfPacket;

procedure. ReceivePacket

imports(var SenderToReceiver,ReceiverToSender: Medium; var RSN: Bit; var ReceiverBuffer: QueueOiPacket);
post RPPost(ReceiverBuller, ReceiverButier', SenderToRecelver, SenderToReceiver’,

RecelverToSender, ReceiverToSender’, RSN, RSN');

{Doesn't deliver, just places in ReceiverBuffer. Only Acks after delivery}

begin
if SeqMatch(SenderToReceiver RSN) then

{Something we were waiting for. Accept, prepare to deliver.

Won't Ack until delivered}
RSN := ~RSN:
ReceiverBuffer :* que(Front(SenderToReceiver));

end
glse if SeqMatch(SenderToReceiver,~RSN) and Empty(ReceiverBuffer) then
{Having delivered, we ACK when requested for the last packet}

ReceiverToSender := Transmit(ReceiverToSender,
Front(SenderToReceiver))
and; {that's all for ReceivePacket)}

procedyce Deliver

imports{var Qut: QueusOfMessage; var ReceiverToSender: Medium;
var ReceiverButter: QueueOfPacket);

post DPost(Out, Out’, ReceiverButler, ReceiverButfer’, ReceiverToSender,
ReceiverToSender’);

begin
if ~Empty(ReceiverBuffer) than

begin
Out := Out Add Text(Front{ReceiverBuffer));

RecoeiverToSender:= Transmit(ReceiverToSender, Front(ReceiverBuffer));

ReceiverBuffer:= NewQueuelQfPacket;
end;
end;: {end of Deliver)

procedure InitReceiver
imports{var RSN:BN; var ReceiverBuller: QueueOtPacket);
post IRPost(Out,ReceiverButier,RSN);
begin
Out:= NewQueueOfMessage:
RSN:= InitialSequenceNumber;
ReceiverBuffer:= NewQueueOfPacket;
and {(InitReceiver};

begin: {Receiver has no body)} end:

. eritnrg

et

o Aoe ,VWM

Mmmwm.p — v,

- a i e et oA R~

ASSERTED PROCEDURES FOR THE RECEIVER

IV.3. Definitions for the Assertions

define

define

define

define

define

detine

DPost(sent',sent,rbuf’,rbuf,.rs',rs) ==
all s(RecefvervarsMatch(s,sent,rbuf, SenderToReceiver(s),rs RSN(s))
imp
ReceivervarsMatch(Deliver(s).sent', rbuf’' SenderToReceiver(s),
rs’',RSN(s))):

RPPost(rbuf’,rbuf,sr' ,sr,rs’',rs,rsn’',rsn) ==
all s(ReceivervarsMatch(s,Received(s),rbuf,
sr,rs,rsn)
imp
ReceivervarsMatch(ReceivePacket(s), Received(s),rbuf’,
sr',rs',rsn'));

IRPost(out, rbuf,rsn) ==
some sr,rs(ReceivervVarsMatch(InitializeProtocol,
out,rbuf,sr,rs,rsn));

STPost(sr'.sr,rs',.rs, pend’ ,pend,ssn’',ssn) ==
all s(SendervarsMatch(s,Sent(s).pend,sr,rs,ssn)
imp
SenderVarsMatch(Retransmit{ReceiveAck(s)),
Sent(s),pend’' ,sr',rs',ssn'));

PSPost(msg,succ,sent’ sent,sr’,sr,pend’' ,pend,ssn) ==
all s(SendervarsMatch(s,sent,pend,sr, ReceiverToSender(s),ssn)
imp
SenderVarsMatch(ProtocolSend(s,msg),
sent'.pend’,sr' ReceiverToSender(s),ssn))
and succ = Empty(pend);

ISPost(sent ,pend,ssn) ==
some sr,rs(
SenderVarsMatch(InitializeProtocol,sent,pend,sr,rs,ssn));

56 IMPLEMENTING PROCEDURES AND ASSERTIONS

IV.4. Context in Which the‘ Assertions are Defined
type ABContext;

declare s,s',s81,82 :ABProt5 ;
declare msg :Message ;
- declare sent,sent’',out,out’ : QueueOiMessage ;
. declare qp.pend.pend’, rbuf, rbuf’ :QueueOfPacket ;
i declare sr,sr’',rs,rs’,s2r,r2s :Medium ;
declare rsn,ssn,rsn’,ssn’ H: ' H
declare b,succ,succ’ :Boolean;
interface SenderVarsMatch(s.sent,pend,sr,rs,ssn),
ReceivervarsMatch(s,out,rbuf,sr,rs, rsn), |
“i SelectorsMatch(s,sent,out,pend,rbuf, sr,rs,ssn,rsn),]
- SeqMatch(sr,bit),
' Empty(qp): Boolean: 1
define SendervarsMatch(s,sent ,pend,sr,rs,ssn) ==

SelectorsMatch(s,sent Received(s),pend,ReceiverBuffer(s),.sr,rs,ssn,RSH(s)).

ReceivervarsMatch(s,out,rbuf,sr,rs,rsn) ==
SelectorsMatch(s,Sent(s),out,Pending(s),rbuf,sr,rs,SSN(s),.rsn);

define SelectorsMatch(s,sent,out,pend, rbuf, s2r, r2s,ssn,rsn) ==
sent = Sent(s) and
out = Received(s) and
pend = Pending(s) and
rbuf= ReceiverBuffer(s) and
s2r = SenderToReceiver(s) and
r2s = ReceiverToSender(s) and
ssn = SSN(s) and
rsn = RSN(s):

axiom SeqMatch(pktbuf,i) ==

not Empty(pktbuf) and Seq(Front(pktbuf)) = 1;
define Empty(qp) == qp=NewQueueOfPacket:
interface PSPost(msg,succ,sent’' sent,sr',sr. pend’,pend,ssn),

STPost(sr',sr.rs',rs,pend’ ,pend,s3n’,s8n),
ISPost(sent . pend,ssn),

RPPost(rbuf’,rbuf,sr’, sr,rs’, rs,rsn’,rsn),
DPost(sent’, sent,rbuf’,rbuf,rs’,rs),

IRPost(out, rbuf,rsn) :Boolean;

note the assertion definitions go here;

end {ABContext);

REFERENCES

1.

10.

1.

12,

13.

14,

Bartlett, K. A., R. A. Scantlebury, and P. T. A. Wilkinson, "Note on reliable full duplex
transmission over haif duplex links," Communications of the ACM 12 (5), May 1968, 260-261.

Berthomieu, B., Proving Progress Properties of Communication Protocols in Affirm,
USC/Information Sciences Institute, Program Verification Project, Affirm Memo 35, September
1980.

Berthomieu, B., Selective Repeat Protocol: Axiomatization and Proofs, USC/Information
Sciences Institute, Program Verification Project, Affirm Memo 36, September 1980.

Berzins, V. A., Abstract Model Specifications for Data Abstractions, Massachusetts Institute of
Technology, Technical Report MIT/LCS/TR-221, July 1979.

Bochmann, G. V., and J. Gecsei, "A unified method for the specification and verification of
protocols,” in Proceedings of the IFIP Congress, pp. 229-234, Toronto, Canada, August 1977.

Brand, D., and W. H. Joyner, "Verification of protocols using symbolic execution,” Computer
Networks 2 (4-5), September/October 1978.

Flon, L., and J. Misra, "A unified approach to the specification and verification of abstract data
types,” in Proceedings of the Conference on Specification of Reliable Software, pp. 162-169,
(EEE Computer Society, April 1979.

Floyd, R. W., "Assigning meanings to programs,” in J. T. Schwartz (ed.), Proceedings of
Symposia in Applied Mathematics, pp. 19-32, American Mathematical Society, 1967.

Gerhart, S. L., et al., “An overview of Affirm: a specification and verification system,” in
Proceedings IFIP 80, pp. 343-348, Australia, October 1980.

Goguen, J. A, J. W. Thatcher, and E. G. Wagner, "An initial algebra approach to the
specification, correctness, and implementation of abstract data types,” inR. T. Yeh (ed.),
Current Trends in Programming Methodology, pp. 80-149, Prentice-Hall, 1978.

Goguen, J. A., J. W. Thatcher, and E. G. Wagner, "Abstract data types as initial algebras and the
correctness of data representations,” in R. T. Yeh (ed.), Current Trends in Programming
Methodology, Volume 1V, Prentice-Hall, 1978,

Goguen, J. A., and J. J. Tardo, “An introduction to OBJ: a language for writing and testing
algebraic program specifications,” in Proceedings of the Specifications of Reliable Software
Conference, pp. 170-189, IEEE Computer Society, Technical Committee on Software
Engineering, April 1979.

Good, D. I, R. M. Cohen, and J. Keeton-Williams, "Principles of proving concurrent programs in
GYPSY," in Proceedings of 6th ACM Symposium on Principles of Programming Languages,
pp. 42-52, ACM SIGPLAN, 1978.

Guttag, J. V., The Specification and Application to Programming of Abstract Data Types,
Ph.D. thesis, University of Toronto, Department of Computer Science, October 1975.

185.

16.

17.

18.

19.

21.

24,

REFERENCES

Guttag, J. V., and J. J. Horning, "The algebraic specification of abstract data types," Acta
Informatica 10, 1978, 27-52.

Guttag, J. V., E. Horowitz, and D. R. Musser, “"The design of data type specifications,” in

R. T. Yeh (ed.), Current Trends in Programming Methodology, pp. 60-79, Prentice-Hall, 1978.
(An expanded version of a paper which appeared in Proceedings of the Second International
Conference on Software Engineering, October 1976.)

Guttag, J. V., E. Horowitz, and D. R. Musser, "Abstract data types and software validation,"
CACM 21, December 1978, 1048-1064. (Also USC/Information Sciences Institute RR-76-48,
August 1976.)

Guttag, J. V., "Notes on type abstraction,” /EEE Transactions on Software Engineering SE-6 (1),
January 1980, 13-23.

Hailpern, B. T., Veritying Concurrent Processes Using Temporal Logic, Ph.D. thesis, Stanford
University, Computer Systems Laboratory, August 1980. Technical Report No. 195.

Hailpern, B., and S. Owicki, "Veritying network protocols using temporat logic," in Proceedings
of the 1980 Trends and Applications Symposium: Computer Network Protocols, National Bureau
of Standards, Gaithersburg, Maryland, May 1980.

Haijek, J., "Automatically verified data transfer protocols," in Proceedings of the International
Conference on Computer Communication, pp. 749-756, International Council for Computer
Communication, 1978.

Hoare, C. A. R., "Proof of correctness of data representations," Acta Informatica 1 (4), 1972,
271-281.

Reference Model of Open Systems Architecture. Publication number TC97/SC16/N537,
International Organization for Standardization.

Krogdabhl, S., "Verification of a class of link-level protocols,” BIT 18, 1978, 436-448.

Liskov, B., and S. N. Zilles, "Specification techniques for data abstractions," /EEE Transactions
on Software Engineering SE-1 (1), March 1975, 7-18.

Liskov, B., and V. Berzins, “An appraisal of program specifications,” in P. Wegner (ed.),
Research Directions in Software Technology, MIT Press, 1979.

Locasso, R., J. Scheid, D. V. Schorre, and P. Eggert, The Ina Jo Specification Language
Reference Manual, System Development Corporation, Technical Report TM-(L)-6021/001/00,
June 1980.

Loeckx, J., Algorithmic Specifications of Abstract Data Types, Universitiit des Saarlandes
(Saarbrlcken), Technical Report , 1880.

Millen, J. K., Operating System Security Verification, The MITRE Corporation, Technical
Report M79-223, September 1979.

3 A
B i

o TR TR LR
» .

REFERENCES 50

30. Musser, D. R., "A data type verification system based on rewrite rules," in Proceedings of the
Sixth Texas Conference on Computing Systems, pp. 1A22-1A31, Austin, Texas, November 1877.

31. Musser, D. R., "Abstract data type specification in the Affirm system,” IEEE Transactions on
Software Engineering SE-6 (1), January 1980, 24-32.

32. Overman, W. T., Formal verification of GMBs, University of California, Los Angeles, Computer
Science Department, Internal Memorandum 176, 1977.

33. Owicki, S., and L. Lamport, Proving Liveness Properties of Concurrent Programs, Stanford
University, Technical Report S&L 1 (Op. 57), October 1980.

34. Parnas, D. L., "A technique for software module specification with examples,” Communications
of the ACM 15 (5), May 1972, 330-336.

35. Parnas, D., "The use of precise specifications in the development of software,” in Proceedings
of the IFIP Congress 1977, pp. 861-868, IFIP, 1977.

36. Parnas, D., "Designing software for ease of extension and contraction,” in Proceedings of the
Third International Conference on Software Engineering, pp. 264-277, IEEE-ACM, May 1978.

37. Principato, R. N., Jr., A Formalization of the State Machine Specification Technique,
Massachusetts Institute of Technology, Technical Report MIT/LCS/TR-202, May 1978.

38. Razouk, R. R., and G. Estrin, "Validation of the X.21 interface specification using SARA," in
Proceedings of the 1980 Trends and Applications Symposium: Computer Netwark Protacols,
pp. 165-167, National Bureau of Standards, Gaithersburg, Maryland, May 1980.

39. Robinson, L., and O. Roubine, SPECIAL - A Specification and Assertion Language, Stanford
Research Institute, Technical Report CSL-46, 1977.

40. Robinson, L., and K. Levitt, "Proof techniques for hierarchically structured programs,”
Communications of the ACM 20 (4), April 1977, 271-283.

41. Schwabe, D., Transport Protocol Specification in Affirm, USC/Information Sciences institute,
Program Verification Project, Affirm Memo 19, March 1980.

42. Schwabe, D., Formal Techniques lor Specification and Veritication of Protocols, Ph.D. thesis,
University of California, Los Angeles, Computer Science Department, March 1981. (Also UCLA
Technical Report ENG 8209.)

43. Schwabe, D., Formal Specification and Verification of a Connection Establishment Protocol,
USC/Information Sciences Institute, ISI/RR-81-91, March 1981.

44, Stenning, N. V., "A data transfer protocol," Computer Networks 1, 1976, 88-110.

45. Subrahmanyan, P. A., On Proving the Correctness of Data Type implementations, University of
Utah, Department of Computer Science, Technical Report, September 1979.

48. Sunshine, C. A., Interprocess Communication Protocols for Computer Networks, Ph.D. thesis,
Stanford University, 1975.

REFERENCES

. Sunshine, C. A., “Formal methods for protocol specification and verification,” Computer 12 (8),
September 1979, 20-27.

Sunshine, C. A., Formal Modeling of Communication Protocols, USC/Information Sciences
Institute, RR-81-89, March 1981.

. Thompson, D. H., A Behavioral Axiomatization of the Stenning Data Transfer Protocol,
USC/Information Sciences Institute, Program Verification Project, Affirm Memo 16, June 1980.

. Thompson, D. H., S. L. Gerhart, R. W. Erickson, S. Lee, and R. L. Bates, eds., The Affirm
Reference Library, USC/Information Sciences Institute, 1981. (Five volumes: Reference Manual,
User's Guide, Type Library, Annotated Transcripts, and Collected Papers, 450 pages.)

. Thompson, D. H., and R. W. Erickson, Documentation of the Proofs for the Affirm-Protocol
Paper, USC/Information Sciences Institute, Program Verification Project, Affirm Memo 39,
January 1981.

. Wuif, W. A,, R. L. London, and M. Shaw, "An introduction to the construction and verification of

Alphard programs,” IEEE Transactions on Software Engineering SE-2 (4), December 1976,
253-265.

